6,309 research outputs found

    On the Fly Orchestration of Unikernels: Tuning and Performance Evaluation of Virtual Infrastructure Managers

    Full text link
    Network operators are facing significant challenges meeting the demand for more bandwidth, agile infrastructures, innovative services, while keeping costs low. Network Functions Virtualization (NFV) and Cloud Computing are emerging as key trends of 5G network architectures, providing flexibility, fast instantiation times, support of Commercial Off The Shelf hardware and significant cost savings. NFV leverages Cloud Computing principles to move the data-plane network functions from expensive, closed and proprietary hardware to the so-called Virtual Network Functions (VNFs). In this paper we deal with the management of virtual computing resources (Unikernels) for the execution of VNFs. This functionality is performed by the Virtual Infrastructure Manager (VIM) in the NFV MANagement and Orchestration (MANO) reference architecture. We discuss the instantiation process of virtual resources and propose a generic reference model, starting from the analysis of three open source VIMs, namely OpenStack, Nomad and OpenVIM. We improve the aforementioned VIMs introducing the support for special-purpose Unikernels and aiming at reducing the duration of the instantiation process. We evaluate some performance aspects of the VIMs, considering both stock and tuned versions. The VIM extensions and performance evaluation tools are available under a liberal open source licence

    Modeling, Simulation and Emulation of Intelligent Domotic Environments

    Get PDF
    Intelligent Domotic Environments are a promising approach, based on semantic models and commercially off-the-shelf domotic technologies, to realize new intelligent buildings, but such complexity requires innovative design methodologies and tools for ensuring correctness. Suitable simulation and emulation approaches and tools must be adopted to allow designers to experiment with their ideas and to incrementally verify designed policies in a scenario where the environment is partly emulated and partly composed of real devices. This paper describes a framework, which exploits UML2.0 state diagrams for automatic generation of device simulators from ontology-based descriptions of domotic environments. The DogSim simulator may simulate a complete building automation system in software, or may be integrated in the Dog Gateway, allowing partial simulation of virtual devices alongside with real devices. Experiments on a real home show that the approach is feasible and can easily address both simulation and emulation requirement

    RAFDA: A Policy-Aware Middleware Supporting the Flexible Separation of Application Logic from Distribution

    Get PDF
    Middleware technologies often limit the way in which object classes may be used in distributed applications due to the fixed distribution policies that they impose. These policies permeate applications developed using existing middleware systems and force an unnatural encoding of application level semantics. For example, the application programmer has no direct control over inter-address-space parameter passing semantics. Semantics are fixed by the distribution topology of the application, which is dictated early in the design cycle. This creates applications that are brittle with respect to changes in distribution. This paper explores technology that provides control over the extent to which inter-address-space communication is exposed to programmers, in order to aid the creation, maintenance and evolution of distributed applications. The described system permits arbitrary objects in an application to be dynamically exposed for remote access, allowing applications to be written without concern for distribution. Programmers can conceal or expose the distributed nature of applications as required, permitting object placement and distribution boundaries to be decided late in the design cycle and even dynamically. Inter-address-space parameter passing semantics may also be decided independently of object implementation and at varying times in the design cycle, again possibly as late as run-time. Furthermore, transmission policy may be defined on a per-class, per-method or per-parameter basis, maximizing plasticity. This flexibility is of utility in the development of new distributed applications, and the creation of management and monitoring infrastructures for existing applications.Comment: Submitted to EuroSys 200

    Universal Resource Lifecycle Management

    Get PDF
    This paper presents a model and a tool that allows Web users to define, execute, and manage lifecycles for any artifact available on the Web. In the paper we show the need for lifecycle management of Web artifacts, and we show in particular why it is important that non-programmers are also able to do this. We then discuss why current models do not allow this, and we present a model and a system implementation that achieves lifecycle management for any URI-identifiable and accessible object. The most challenging parts of the work lie in the definition of a simple but universal model and system (and in particular in allowing universality and simplicity to coexist) and in the ability to hide from the lifecycle modeler the complexity intrinsic in having to access and manage a variety of resources, which differ in nature, in the operations that are allowed on them, and in the protocols and data formats required to access them

    Memristors for the Curious Outsiders

    Full text link
    We present both an overview and a perspective of recent experimental advances and proposed new approaches to performing computation using memristors. A memristor is a 2-terminal passive component with a dynamic resistance depending on an internal parameter. We provide an brief historical introduction, as well as an overview over the physical mechanism that lead to memristive behavior. This review is meant to guide nonpractitioners in the field of memristive circuits and their connection to machine learning and neural computation.Comment: Perpective paper for MDPI Technologies; 43 page

    Virtualizing the Stampede2 Supercomputer with Applications to HPC in the Cloud

    Full text link
    Methods developed at the Texas Advanced Computing Center (TACC) are described and demonstrated for automating the construction of an elastic, virtual cluster emulating the Stampede2 high performance computing (HPC) system. The cluster can be built and/or scaled in a matter of minutes on the Jetstream self-service cloud system and shares many properties of the original Stampede2, including: i) common identity management, ii) access to the same file systems, iii) equivalent software application stack and module system, iv) similar job scheduling interface via Slurm. We measure time-to-solution for a number of common scientific applications on our virtual cluster against equivalent runs on Stampede2 and develop an application profile where performance is similar or otherwise acceptable. For such applications, the virtual cluster provides an effective form of "cloud bursting" with the potential to significantly improve overall turnaround time, particularly when Stampede2 is experiencing long queue wait times. In addition, the virtual cluster can be used for test and debug without directly impacting Stampede2. We conclude with a discussion of how science gateways can leverage the TACC Jobs API web service to incorporate this cloud bursting technique transparently to the end user.Comment: 6 pages, 0 figures, PEARC '18: Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US

    Verifying Web Applications: From Business Level Specifications to Automated Model-Based Testing

    Full text link
    One of reasons preventing a wider uptake of model-based testing in the industry is the difficulty which is encountered by developers when trying to think in terms of properties rather than linear specifications. A disparity has traditionally been perceived between the language spoken by customers who specify the system and the language required to construct models of that system. The dynamic nature of the specifications for commercial systems further aggravates this problem in that models would need to be rechecked after every specification change. In this paper, we propose an approach for converting specifications written in the commonly-used quasi-natural language Gherkin into models for use with a model-based testing tool. We have instantiated this approach using QuickCheck and demonstrate its applicability via a case study on the eHealth system, the national health portal for Maltese residents.Comment: In Proceedings MBT 2014, arXiv:1403.704

    Use of Statecharts in the Modeling of Dynamic Behavior in the ATLAS Daq Prototype-1

    Get PDF

    Programming distributed and adaptable autonomous components--the GCM/ProActive framework

    Get PDF
    International audienceComponent-oriented software has become a useful tool to build larger and more complex systems by describing the application in terms of encapsulated, loosely coupled entities called components. At the same time, asynchronous programming patterns allow for the development of efficient distributed applications. While several component models and frameworks have been proposed, most of them tightly integrate the component model with the middleware they run upon. This intertwining is generally implicit and not discussed, leading to entangled, hard to maintain code. This article describes our efforts in the development of the GCM/ProActive framework for providing distributed and adaptable autonomous components. GCM/ProActive integrates a component model designed for execution on large-scale environments, with a programming model based on active objects allowing a high degree of distribution and concurrency. This new integrated model provides a more powerful development, composition, and execution environment than other distributed component frameworks. We illustrate that GCM/ProActive is particularly adapted to the programming of autonomic component systems, and to the integration into a service-oriented environment
    corecore