26,434 research outputs found

    Optimization of 5-Axis milling processes based on the process models with application to airfoil machining

    Get PDF
    5-axis milling is widely used in machining of complex surfaces such as airfoils. Improper selection of machining parameters may cause low productivity and undesired results during machining. There are several constraints such as available power and torque, chatter stability, tool breakage etc. In order to respect such constraints proper machining parameters should be determined. In this paper, methodologies for improving 5-axis milling processes are presented. Selection of machining parameters is performed using process simulations. The developed methodologies are presented on an example airfoil

    Experimental study on energy consumption of computer numerical control machine tools

    Get PDF
    Machining processes are responsible for substantial environmental impacts due to their great energy consumption. Accurately characterizing the energy consumption of machining processes is a starting point to increase manufacturing energy efficiency and reduce their associated environmental impacts. The energy calculation of machining processes depends on the availability of energy supply data of machine tools. However, the energy supply can vary greatly among different types of machine tools so that it is difficult to obtain the energy data theoretically. The aim of this research was to investigate the energy characteristics and obtain the power models of computer numerical control (CNC) machine tools through an experimental study. Four CNC lathes, two CNC milling machines and one machining center were selected for experiments. Power consumption of non-cutting motions and material removal was measured and compared for the selected machine tools. Here, non-cutting motions include standby, cutting fluid spraying, spindle rotation and feeding operations of machine tools. Material removal includes turning and milling. Results show that the power consumption of non-cutting motions and milling is dependent on machine tools while the power consumption of turning is almost independent from the machine tools. The results imply that the energy saving potential of machining processes is tremendous

    A holistic integrated dynamic design and modelling approach applied to the development of ultraprecision micro-milling machines

    Get PDF
    Ultraprecision machines with small footprints or micro-machines are highly desirable for micro-manufacturing high-precision micro-mechanical components. However, the development of the machines is still at the nascent stage by working on an individual machine basis and hence lacks generic scientific approach and design guidelines. Using computer models to predict the dynamic performance of ultraprecision machine tools can help manufacturers substantially reduce the lead time and cost of developing new machines. Furthermore, the machine dynamic performance depends not only upon the mechanical structure and components but also the control system and electronic drives. This paper proposed a holistic integrated dynamic design and modelling approach, which supports analysis and optimization of the overall machine dynamic performance at the early design stage. Based on the proposed approach the modelling and simulation process on a novel 5-axis bench-top ultraprecision micro-milling machine tool – UltraMill – is presented. The modelling and simulation cover the dynamics of the machine structure, moving components, control system and the machining process, and are used to predict the overall machine performance of two typical configurations. Preliminary machining trials have been carried out and provided the evidence of the approach being helpful to assure the machine performing right at the first setup

    AFWAL space control technology program

    Get PDF
    An overview of space oriented control technology programs which are applicable to flexible large space structures is presented. The spacecraft control activity is interdisciplinary with activities in structures, structural dynamics and control brought together. The large flexible structures to be controlled have many physical factors that influence the final controllability of the vehicle. Factors are studied such as rigidity of both structural elements and joints, damping inherent in both material as well as discrete dampers located throughout the structure, and the bandwidth of both sensors and actuators used to sense motion and control it. Descriptions of programs both in-house and contracted are given

    Virtual damping and Einstein relation in oscillators

    Get PDF
    This paper presents a new physical theory of oscillator phase noise. Built around the concept of phase diffusion, this work bridges the fundamental physics of noise and existing oscillator phase-noise theories. The virtual damping of an ensemble of oscillators is introduced as a measure of phase noise. The explanation of linewidth compression through virtual damping provides a unified view of resonators and oscillators. The direct correspondence between phase noise and the Einstein relation is demonstrated, which reveals the underlying physics of phase noise. The validity of the new approach is confirmed by consistent experimental agreement
    • …
    corecore