20 research outputs found

    On the Monotonicity of the Generalized Marcum and Nuttall Q-Functions

    Full text link
    Monotonicity criteria are established for the generalized Marcum Q-function, \emph{Q}_{M}, the standard Nuttall Q-function, \emph{Q}_{M,N}, and the normalized Nuttall Q-function, QM,N\mathcal{Q}_{M,N}, with respect to their real order indices M,N. Besides, closed-form expressions are derived for the computation of the standard and normalized Nuttall Q-functions for the case when M,N are odd multiples of 0.5 and MNM\geq N. By exploiting these results, novel upper and lower bounds for \emph{Q}_{M,N} and QM,N\mathcal{Q}_{M,N} are proposed. Furthermore, specific tight upper and lower bounds for \emph{Q}_{M}, previously reported in the literature, are extended for real values of M. The offered theoretical results can be efficiently applied in the study of digital communications over fading channels, in the information-theoretic analysis of multiple-input multiple-output systems and in the description of stochastic processes in probability theory, among others.Comment: Published in IEEE Transactions on Information Theory, August 2009. Only slight formatting modification

    Design and performance analysis of quadratic-form receivers for fading channels

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Analytic Expressions and Bounds for Special Functions and Applications in Communication Theory

    Get PDF
    This paper is devoted to the derivation of novel analytic expressions and bounds for a family of special functions that are useful in wireless communication theory. These functions are the well-known Nuttall Q-function, incomplete Toronto function, Rice Ie-function, and incomplete Lipschitz-Hankel integrals. Capitalizing on the offered results, useful identities are additionally derived between the above functions and Humbert, Φ1, function as well as for specific cases of the Kampé de Fériet function. These functions can be considered as useful mathematical tools that can be employed in applications relating to the analytic performance evaluation of modern wireless communication systems, such as cognitive radio, cooperative, and free-space optical communications as well as radar, diversity, and multiantenna systems. As an example, new closed-form expressions are derived for the outage probability over nonlinear generalized fading channels, namely, α-η-μ, α-λ-μ, and α-κ-μ as well as for specific cases of the η-μ and λ-μ fading channels. Furthermore, simple expressions are presented for the channel capacity for the truncated channel inversion with fixed rate and corresponding optimum cutoff signal-to-noise ratio for single-antenna and multiantenna communication systems over Rician fading channels. The accuracy and validity of the derived expressions is justified through extensive comparisons with respective numerical results

    Performance analysis of diversity wireless systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Random geometric graphs with general connection functions

    Get PDF
    In the original (1961) Gilbert model of random geometric graphs, nodes are placed according to a Poisson point process, and links formed between those within a fixed range. Motivated by wireless ad-hoc networks "soft" or "probabilistic" connection models have recently been introduced, involving a "connection function" H(r) that gives the probability that two nodes at distance r are linked (directly connect). In many applications (not only wireless networks), it is desirable that the graph is connected, that is every node is linked to every other node in a multihop fashion. Here, the connection probability of a dense network in a convex domain in two or three dimensions is expressed in terms of contributions from boundary components, for a very general class of connection functions. It turns out that only a few quantities such as moments of the connection function appear. Good agreement is found with special cases from previous studies and with numerical simulations.Comment: 16 pages; improved figures and minor edit

    Approximations for Performance Analysis in Wireless Communications and Applications to Reconfigurable Intelligent Surfaces

    Get PDF
    In the last few decades, the field of wireless communications has witnessed significant technological advancements to meet the needs of today’s modern world. The rapidly emerging technologies, however, are becoming increasingly sophisticated, and the process of investigating their performance and assessing their applicability in the real world is becoming more challenging. That has aroused a relatively wide range of solutions in the literature to study the performance of the different communication systems or even draw new results that were difficult to obtain. These solutions include field measurements, computer simulations, and theoretical solutions such as alternative representations, approximations, or bounds of classic functions that commonly appear in performance analyses. Field measurements and computer simulations have significantly improved performance evaluation in communication theory. However, more advanced theoretical solutions can be further developed in order to avoid using the ex- pensive and time-consuming wireless communications measurements, replace the numerical simulations, which can sometimes be unreliable and suffer from failures in numerical evaluation, and achieve analytically simpler results with much higher accuracy levels than the existing theoretical ones. To this end, this thesis firstly focuses on developing new approximations and bounds using unified approaches and algorithms that can efficiently and accurately guide researchers through the design of their adopted wireless systems and facilitate the conducted performance analyses in the various communication systems. Two performance measures are of primary interest in this study, namely the average error probability and the ergodic capacity, due to their valuable role in conducting a better understanding of the systems’ behavior and thus enabling systems engineers to quickly detect and resolve design issues that might arise. In particular, several parametric expressions of different analytical forms are developed to approximate or bound the Gaussian Q-function, which occurs in the error probability analysis. Additionally, any generic function of the Q-function is approximated or bounded using a tractable exponential expression. Moreover, a unified logarithmic expression is proposed to approximate or bound the capacity integrals that occur in the capacity analysis. A novel systematic methodology and a modified version of the classical Remez algorithm are developed to acquire optimal coefficients for the accompanying parametric approximation or bound in the minimax sense. Furthermore, the quasi-Newton algorithm is implemented to acquire optimal coefficients in terms of the total error. The average symbol error probability and ergodic capacity are evaluated for various applications using the developed tools. Secondly, this thesis analyzes a couple of communication systems assisted with reconfigurable intelligent surfaces (RISs). RIS has been gaining significant attention lately due to its ability to control propagation environments. In particular, two communication systems are considered; one with a single RIS and correlated Rayleigh fading channels, and the other with multiple RISs and non-identical generic fading channels. Both systems are analyzed in terms of outage probability, average symbol error probability, and ergodic capacity, which are derived using the proposed tools. These performance measures reveal that better performance is achieved when assisting the communication system with RISs, increasing the number of reflecting elements equipped on the RISs, or locating the RISs nearer to either communication node. In conclusion, the developed approximations and bounds, together with the optimized coefficients, provide more efficient tools than those available in the literature, with richer capabilities reflected by the more robust closed-form performance analysis, significant increase in accuracy levels, and considerable reduction in analytical complexity which in turns can offer more understanding into the systems’ behavior and the effect of the different parameters on their performance. Therefore, they are expected to lay the groundwork for the investigation of the latest communication technologies, such as RIS technology, whose performance has been studied for some system models in this thesis using the developed tools

    Generic exponential bounds and erfc-bounds on the marcum Q-function via the geometric approach

    No full text
    10.1109/GLOCOM.2006.668GLOBECOM - IEEE Global Telecommunications Conference
    corecore