710 research outputs found

    ODIN: Obfuscation-based privacy-preserving consensus algorithm for Decentralized Information fusion in smart device Networks

    Get PDF
    The large spread of sensors and smart devices in urban infrastructures are motivating research in the area of the Internet of Things (IoT) to develop new services and improve citizens’ quality of life. Sensors and smart devices generate large amounts of measurement data from sensing the environment, which is used to enable services such as control of power consumption or traffic density. To deal with such a large amount of information and provide accurate measurements, service providers can adopt information fusion, which given the decentralized nature of urban deployments can be performed by means of consensus algorithms. These algorithms allow distributed agents to (iteratively) compute linear functions on the exchanged data, and take decisions based on the outcome, without the need for the support of a central entity. However, the use of consensus algorithms raises several security concerns, especially when private or security critical information is involved in the computation. In this article we propose ODIN, a novel algorithm allowing information fusion over encrypted data. ODIN is a privacy-preserving extension of the popular consensus gossip algorithm, which prevents distributed agents from having direct access to the data while they iteratively reach consensus; agents cannot access even the final consensus value but can only retrieve partial information (e.g., a binary decision). ODIN uses efficient additive obfuscation and proxy re-encryption during the update steps and garbled circuits to make final decisions on the obfuscated consensus. We discuss the security of our proposal and show its practicability and efficiency on real-world resource-constrained devices, developing a prototype implementation for Raspberry Pi devices

    ODIN: Obfuscation-based privacy-preserving consensus algorithm for Decentralized Information fusion in smart device Networks

    Get PDF
    The large spread of sensors and smart devices in urban infrastructures are motivating research in the area of the Internet of Things (IoT) to develop new services and improve citizens’ quality of life. Sensors and smart devices generate large amounts of measurement data from sensing the environment, which is used to enable services such as control of power consumption or traffic density. To deal with such a large amount of information and provide accurate measurements, service providers can adopt information fusion, which given the decentralized nature of urban deployments can be performed by means of consensus algorithms. These algorithms allow distributed agents to (iteratively) compute linear functions on the exchanged data, and take decisions based on the outcome, without the need for the support of a central entity. However, the use of consensus algorithms raises several security concerns, especially when private or security critical information is involved in the computation. In this article we propose ODIN, a novel algorithm allowing information fusion over encrypted data. ODIN is a privacy-preserving extension of the popular consensus gossip algorithm, which prevents distributed agents from having direct access to the data while they iteratively reach consensus; agents cannot access even the final consensus value but can only retrieve partial information (e.g., a binary decision). ODIN uses efficient additive obfuscation and proxy re-encryption during the update steps and garbled circuits to make final decisions on the obfuscated consensus. We discuss the security of our proposal and show its practicability and efficiency on real-world resource-constrained devices, developing a prototype implementation for Raspberry Pi devices

    Public Key Encryption Supporting Plaintext Equality Test and User-Specified Authorization

    Get PDF
    In this paper we investigate a category of public key encryption schemes which supports plaintext equality test and user-specified authorization. With this new primitive, two users, who possess their own public/private key pairs, can issue token(s) to a proxy to authorize it to perform plaintext equality test from their ciphertexts. We provide a formal formulation for this primitive, and present a construction with provable security in our security model. To mitigate the risks against the semi-trusted proxies, we enhance the proposed cryptosystem by integrating the concept of computational client puzzles. As a showcase, we construct a secure personal health record application based on this primitive

    Puncturable Encryption: A Generic Construction from Delegatable Fully Key-Homomorphic Encryption

    Get PDF
    Puncturable encryption (PE), proposed by Green and Miers at IEEE S&P 2015, is a kind of public key encryption that allows recipients to revoke individual messages by repeatedly updating decryption keys without communicating with senders. PE is an essential tool for constructing many interesting applications, such as asynchronous messaging systems, forward-secret zero round-trip time protocols, public-key watermarking schemes and forward-secret proxy re-encryptions. This paper revisits PEs from the observation that the puncturing property can be implemented as efficiently computable functions. From this view, we propose a generic PE construction from the fully key-homomorphic encryption, augmented with a key delegation mechanism (DFKHE) from Boneh et al. at Eurocrypt 2014. We show that our PE construction enjoys the selective security under chosen plaintext attacks (that can be converted into the adaptive security with some efficiency loss) from that of DFKHE in the standard model. Basing on the framework, we obtain the first post-quantum secure PE instantiation that is based on the learning with errors problem, selective secure under chosen plaintext attacks (CPA) in the standard model. We also discuss about the ability of modification our framework to support the unbounded number of ciphertext tags inspired from the work of Brakerski and Vaikuntanathan at CRYPTO 2016

    A Type-and-Identity-based Proxy Re-Encryption Scheme and its Application in Healthcare

    Get PDF
    Proxy re-encryption is a cryptographic primitive developed to delegate the decryption right from one party (the delegator) to another (the delegatee). In a proxy re-encryption scheme, the delegator assigns a key to a proxy to re-encrypt all messages encrypted with his public key such that the re-encrypted ciphertexts can be decrypted with the delegatee’s private key. We propose a type-and-identity-based proxy re-encryption scheme based on the Boneh-Franklin Identity Based Encryption (IBE) scheme. In our scheme, the delegator can categorize messages into different types and delegate the decryption right of each type to the delegatee through a proxy. Our scheme enables the delegator to provide the proxy fine-grained re-encryption capability. As an application, we propose a fine-grained Personal Health Record (PHR) disclosure scheme for healthcare service by applying the proposed scheme

    Cost-effective secure e-health cloud system using identity based cryptographic techniques

    Get PDF
    Nowadays E-health cloud systems are more and more widely employed. However the security of these systems needs more consideration for the sensitive health information of patients. Some protocols on how to secure the e-health cloud system have been proposed, but many of them use the traditional PKI infrastructure to implement cryptographic mechanisms, which is cumbersome for they require every user having and remembering its own public/private keys. Identity based encryption (View the MathML sourceIBE) is a cryptographic primitive which uses the identity information of the user (e.g., email address) as the public key. Hence the public key is implicitly authenticated and the certificate management is simplified. Proxy re-encryption is another cryptographic primitive which aims at transforming a ciphertext under the delegator AA into another ciphertext which can be decrypted by the delegatee BB. In this paper, we describe several identity related cryptographic techniques for securing E-health system, which include new View the MathML sourceIBE schemes, new identity based proxy re-encryption (View the MathML sourceIBPRE) schemes. We also prove these schemes’ security and give the performance analysis, the results show our View the MathML sourceIBPRE scheme is especially highly efficient for re-encryption, which can be used to achieve cost-effective cloud usage.Peer ReviewedPostprint (author's final draft

    New Security Definitions, Constructions and Applications of Proxy Re-Encryption

    Get PDF
    La externalización de la gestión de la información es una práctica cada vez más común, siendo la computación en la nube (en inglés, cloud computing) el paradigma más representativo. Sin embargo, este enfoque genera también preocupación con respecto a la seguridad y privacidad debido a la inherente pérdida del control sobre los datos. Las soluciones tradicionales, principalmente basadas en la aplicación de políticas y estrategias de control de acceso, solo reducen el problema a una cuestión de confianza, que puede romperse fácilmente por los proveedores de servicio, tanto de forma accidental como intencionada. Por lo tanto, proteger la información externalizada, y al mismo tiempo, reducir la confianza que es necesario establecer con los proveedores de servicio, se convierte en un objetivo inmediato. Las soluciones basadas en criptografía son un mecanismo crucial de cara a este fin. Esta tesis está dedicada al estudio de un criptosistema llamado recifrado delegado (en inglés, proxy re-encryption), que constituye una solución práctica a este problema, tanto desde el punto de vista funcional como de eficiencia. El recifrado delegado es un tipo de cifrado de clave pública que permite delegar en una entidad la capacidad de transformar textos cifrados de una clave pública a otra, sin que pueda obtener ninguna información sobre el mensaje subyacente. Desde un punto de vista funcional, el recifrado delegado puede verse como un medio de delegación segura de acceso a información cifrada, por lo que representa un candidato natural para construir mecanismos de control de acceso criptográficos. Aparte de esto, este tipo de cifrado es, en sí mismo, de gran interés teórico, ya que sus definiciones de seguridad deben balancear al mismo tiempo la seguridad de los textos cifrados con la posibilidad de transformarlos mediante el recifrado, lo que supone una estimulante dicotomía. Las contribuciones de esta tesis siguen un enfoque transversal, ya que van desde las propias definiciones de seguridad del recifrado delegado, hasta los detalles específicos de potenciales aplicaciones, pasando por construcciones concretas
    corecore