104 research outputs found

    An Object-Oriented Heterogeneous Database Architecture

    Full text link
    Many data management environments face a critical need to integrate heterogeneous data-data that are stored in varying locations using various data management systems with diverse data formats and schemas. To address this problem, the database research community has developed the concept of a heterogeneous database system (HDB) that provides users with the illusion of a single unified database. However, HDBs rely on the implicit assumption that all data to be integrated into the HDB are stored in full-fledged database management systems (DBMS). This assumption leaves environments that need to integrate non-DBMS data unserved by HDB systems. Furthermore, HDBs are complex software solutions that are not easily lmplementable by database developers wrestling with heterogeneous data. This thesis presents a new, easily implemented HDB architecture that is suitable for integrating non-DBMS data. The key to our architecture is using an object-oriented database management system (OODBMS) as an implementation tool. Rather than developing an HDB from scratch, we leverage the power and facilities of the underlying OODBMS to provide a query language, application programmer interface, interactive query interface, concurrency control, etc. Using object-oriented technology gives us an additional benefit-our HDB becomes an object-oriented HDB (OOHDB) providing users with greater data model expressivity along with a powerful behavioral component. The OOHDB architecture we present is independent of a particular OODBMS and can be implemented using a number of commercial OODBMSs for a variety of data management environments. We describe one implementation of our architecture using the GemStone OODBMS for accessing heterogeneous materials science data. This implementation demonstrates how easily the architecture can be implemented. We use this implementation to analyze the performance of the architecture and examine the effectiveness of strategies for enhancing performance. We conclude that for many environments with heterogeneous non-DBMS data, our OOHDB architecture provides a good solution that is easy to implement using commercial OODBMS technology

    On distributed data processing in data grid architecture for a virtual repository

    Get PDF
    The article describes the problem of integration of distributed, heterogeneous and fragmented collections of data with application of the virtual repository and the data grid concept. The technology involves: wrappers enveloping external resources, a virtual network (based on the peer-topeer technology) responsible for integration of data into one global schema and a distributed index for speeding-up data retrieval. Authors present a method for obtaining data from heterogeneously structured external databases and then a procedure of integration the data to one, commonly available, global schema. The core of the described solution is based on the Stack-Based Query Language (SBQL) and virtual updatable SBQL views. The system transport and indexing layer is based on the P2P architecture

    Model-driven generative programming for BIS mobile applications

    Get PDF
    The burst on the availability of smart phones based on the Android platform calls for cost-effective techniques to generate mobile apps for general purpose, distributed business information systems (BIS). To mitigate this problem our research aims at applying model-driven techniques to automatically generate usable prototypes with a sound, maintainable, architecture. Following three base principles: model-based generation, separation of concerns, paradigm seamlessness, we try to answer the main guiding question – how to reduce development time and cost by transforming a given domain model into an Android application? To answer this question we propose to develop an application that follows a generative approach for mobile BIS apps that will mitigate the identified problems. Its input is a platform independent model (PIM), with business rules specified in OCL (Object Constraint Language). We adopted the Design Science Research methodology, that helps gaining problem understanding, identifying systemically appropriate solutions, and in effectively evaluating new and innovative solutions. To better evaluate our solution, besides resorting to third party tools to test specific components integration, we demonstrated its usage and evaluated how well it mitigates a subset of the identified problems in an observational study (we presented our generated apps to an outside audience in a controlled environment to study our model-based centered and, general apps understandability) and communicated its effectiveness to researchers and practitioners.O grande surto de disponibilidade de dispositivos móveis para a plataforma Android requer, técnicas generativas de desenvolvimento de aplicações para sistemas comuns e/ou distribuídos de informação empresariais/negócio, que otimizem a relação custo-benefício. Para mitigar este problema, esta investigação visa aplicar técnicas orientadas a modelos para, automaticamente, gerar protótipos funcionais de aplicações com uma arquitetura robusta e fácil de manter. Seguindo para tal três princípios base: geração baseada no modelo, separação de aspetos, desenvolvimento sem soturas (sem mudança de paradigma), tentamos dar resposta à pergunta orientadora – como reduzir o tempo e custo de desenvolvimento de uma aplicação Android por transformação de um dado modelo de domínio? De modo a responder a esta questão nós propomos desenvolver uma aplicação que segue uma abordagem generativa para aplicações de informação empresariais/negócio móveis de modo a mitigar os problemas identificados. Esta recebe modelos independentes de plataforma (PIM), com regras de negócio especificadas em OCL (Object Constraint Language). Seguimos a metodologia Design Science Research que ajuda a identificar e perceber o problema, a identificar sistematicamente soluções apropriadas aos problemas e a avaliar mais eficientemente soluções novas e inovadoras. Para melhor avaliar a nossa solução, apesar de recorrermos a ferramentas de terceiros para testar a integração de componentes específicos, também demonstramos a sua utilização, através de estudos experimentais (em um ambiente controlado, apresentamos as nossas aplicações geradas a uma audiência externa que nos permitiu estudar a compreensibilidade baseada e centrada em modelos e, de um modo geral, das aplicações) avaliamos o quanto esta mitiga um subconjunto de problemas identificados e comunicamos a sua eficácia para investigadores e profissionais

    CazDataProvider: a solution to the object-relational mismatch

    Get PDF
    Dissertação de mestrado em Engenharia de InformáticaToday, most software applications require mechanisms to store information persistently. For decades, Relational Database Management Systems (RDBMSs) have been the most common technology to provide efficient and reliable persistence. Due to the object-relational paradigm mismatch, object oriented applications that store data in relational databases have to deal with Object Relational Mapping (ORM) problems. Since the emerging of new ORM frameworks, there has been an attempt to lure developers for a radical paradigm shift. However, they still often have troubles finding the best persistence mechanism for their applications, especially when they have to bear with legacy database systems. The aim of this dissertation is to discuss the persistence problem on object oriented applications and find the best solutions. The main focus lies on the ORM limitations, patterns, technologies and alternatives. The project supporting this dissertation was implemented at Cachapuz under the Project Global Weighting Solutions (GWS). Essentially, the objectives of GWS were centred on finding the optimal persistence layer for CazFramework, mostly providing database interoperability with close-to-Structured Query Language (SQL) querying. Therefore, this work provides analyses on ORM patterns, frameworks, alternatives to ORM like Object-Oriented Database Management Systems (OODBMSs). It also describes the implementation of CazDataProvider, a .NET library tool providing database interoperability and dynamic query features. In the end, there is a performance comparison of all the technologies debated in this dissertation. The result of this dissertation provides guidance for adopting the best persistence technology or implement the most suitable ORM architectures.Hoje, a maioria dos aplicações requerem mecanismos para armazenar informação persistentemente. Durante décadas, as RDBMSs têm sido a tecnologia mais comum para fornecer persistência eficiente e confiável. Devido à incompatibilidade dos paradigmas objetos-relacional, as aplicações orientadas a objetos que armazenam dados em bases de dados relacionais têm de lidar com os problemas do ORM. Desde o surgimento de novas frameworks ORM, houve uma tentativa de atrair programadores para uma mudança radical de paradigmas. No entanto, eles ainda têm muitas vezes dificuldade em encontrar o melhor mecanismo de persistência para as suas aplicações, especialmente quando eles têm de lidar com bases de dados legadss. O objetivo deste trabalho é discutir o problema de persistência em aplicações orientadas a objetos e encontrar as melhores soluções. O foco principal está nas limitações, padrões e tecnologias do ORM bem como suas alternativas. O projeto de apoio a esta dissertação foi implementado na Cachapuz no âmbito do Projeto GWS. Essencialmente, os objetivos do GWS foram centrados em encontrar a camada de persistência ideal para a CazFramework, principalmente fornecendo interoperabilidade de base de dados e consultas em SQL. Portanto, este trabalho fornece análises sobre padrões, frameworks e alternativas ao ORM como OODBMS. Além disso descreve a implementação do CazDataProvider, uma biblioteca .NET que fornece interoperabilidade de bases de dados e consultas dinâmicas. No final, há uma comparação de desempenho de todas as tecnologias discutidas nesta dissertação. O resultado deste trabalho fornece orientação para adotar a melhor tecnologia de persistência ou implementar as arquiteturas ORM mais adequadas

    Design of a performance evaluation tool for multimedia databases with special reference to Oracle

    Get PDF
    Increased production and use of multimedia data has led to the development of a more advanced Database Management System (DBMS), like an Object Relational Database Management System (ORDBMS). These advanced databases are necessitated by the complexity in structure and the functionality required by multimedia data. Unfortunately, no suitable benchmarks exist with which to test the performance of databases when handling multimedia data. This thesis describes the design of a benchmark to measure the performance of basic functionality found in multimedia databases. The benchmark, called MORD (Multimedia Object Relational Databases), targets Oracle, a well known commercial Object Relational Database Management System (ORDBMS) that can handle multimedia data. Although MORD targets Oracle, it can easily be applied to other Multimedia Database Management System (MMDBMS) as a result of a design that stressed its portability, and simplicity. MORD consists of a database schema, test data, and code to simulate representative queries on multimedia databases. A number of experiments are described that validate MORD and ensure its correct design and that its objectives are met. A by-product of these experiments is an initial understanding of the performance of multimedia databases. The experiments show that with multimedia data the buffer cache should be at least large enough to hold the largest dataset, a bigger block size improves the performance, and turning off logging and caching for bulk loading improves the performance. MORD can be used to compare different ORDBMS or to assist in the configuration of a specific database

    Automatic mapping of XML documents into relational database

    Get PDF
    Extensible Markup Language (XML) nowadays is one of the most important standard media used for exchanging and representing data through the Internet. Storing, updating and retrieving the huge amount of web services data such as XML is an attractive area of research for researchers and database vendors. In this thesis, we propose and develop a new mapping model, called MAXDOR, for storing, rebuilding, updating and querying XML documents using a relational database without making use of any XML schemas in the mapping process. The model addressed the problem of solving the structural hole between ordered hierarchical XML and unordered tabular relational database to enable us to use relational database systems for storing, updating and querying XML data. A multiple link list is used to maintain XML document structure, manage the process of updating document contents and retrieve document contents efficiently. Experiments are done to evaluate MAXDOR model. MAXDOR will be compared with other well-known models available in the literature(Tatarinov et al., 2002) and (Torsten et al., 2004) using total expected value of rebuilding XML document execution time and insertion of token execution time.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The 1995 Science Information Management and Data Compression Workshop

    Get PDF
    This document is the proceedings from the 'Science Information Management and Data Compression Workshop,' which was held on October 26-27, 1995, at the NASA Goddard Space Flight Center, Greenbelt, Maryland. The Workshop explored promising computational approaches for handling the collection, ingestion, archival, and retrieval of large quantities of data in future Earth and space science missions. It consisted of fourteen presentations covering a range of information management and data compression approaches that are being or have been integrated into actual or prototypical Earth or space science data information systems, or that hold promise for such an application. The Workshop was organized by James C. Tilton and Robert F. Cromp of the NASA Goddard Space Flight Center
    corecore