914 research outputs found

    Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular jacobians of genus 2 curves

    Get PDF
    This paper provides empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves. The second of these conjectures relates six quantities associated to a Jacobian over the rational numbers. One of these six quantities is the size of the Shafarevich-Tate group. Unable to compute that, we computed the five other quantities and solved for the last one. In all 32 cases, the result is very close to an integer that is a power of 2. In addition, this power of 2 agrees with the size of the 2-torsion of the Shafarevich-Tate group, which we could compute

    The arithmetic of hyperelliptic curves

    Get PDF
    We summarise recent advances in techniques for solving Diophantine problems on hyperelliptic curves; in particular, those for finding the rank of the Jacobian, and the set of rational points on the curve

    Pairing-based algorithms for jacobians of genus 2 curves with maximal endomorphism ring

    Get PDF
    Using Galois cohomology, Schmoyer characterizes cryptographic non-trivial self-pairings of the â„“\ell-Tate pairing in terms of the action of the Frobenius on the â„“\ell-torsion of the Jacobian of a genus 2 curve. We apply similar techniques to study the non-degeneracy of the â„“\ell-Tate pairing restrained to subgroups of the â„“\ell-torsion which are maximal isotropic with respect to the Weil pairing. First, we deduce a criterion to verify whether the jacobian of a genus 2 curve has maximal endomorphism ring. Secondly, we derive a method to construct horizontal (â„“,â„“)(\ell,\ell)-isogenies starting from a jacobian with maximal endomorphism ring

    Canonical heights on the jacobians of curves of genus 2 and the infinite descent

    Get PDF
    We give an algorithm to compute the canonical height on a Jacobian of a curve of genus 2. The computations involve only working with the Kummer surface and so lengthy computations with divisors in the Jacobian are avoided. We use this height algorithm to give an algorithm to perform the infinite descent stage of computing the Mordell-Weil group. This last stage is performed by a lattice enlarging procedure

    Nontrivial Sha in the Jacobian of an Infinite Family of Curves of Genus 2.

    Get PDF
    We give an infinite family of curves of genus 2 whose Jacobians have non-trivial members of the Tate-Shafarevich group for descent via Richelot isogeny. We prove this by performing a descent via Richelot isogeny and a complete 2-descent on the isogenous Jacobian. We also give an explicit model of an associated family of surfaces which violate the Hasse principle
    • …
    corecore