14,404 research outputs found

    The KB paradigm and its application to interactive configuration

    Full text link
    The knowledge base paradigm aims to express domain knowledge in a rich formal language, and to use this domain knowledge as a knowledge base to solve various problems and tasks that arise in the domain by applying multiple forms of inference. As such, the paradigm applies a strict separation of concerns between information and problem solving. In this paper, we analyze the principles and feasibility of the knowledge base paradigm in the context of an important class of applications: interactive configuration problems. In interactive configuration problems, a configuration of interrelated objects under constraints is searched, where the system assists the user in reaching an intended configuration. It is widely recognized in industry that good software solutions for these problems are very difficult to develop. We investigate such problems from the perspective of the KB paradigm. We show that multiple functionalities in this domain can be achieved by applying different forms of logical inferences on a formal specification of the configuration domain. We report on a proof of concept of this approach in a real-life application with a banking company. To appear in Theory and Practice of Logic Programming (TPLP).Comment: To appear in Theory and Practice of Logic Programming (TPLP

    Annual Report, 2012-2013

    Get PDF

    Extending Stan for Deep Probabilistic Programming

    Full text link
    Stan is a popular declarative probabilistic programming language with a high-level syntax for expressing graphical models and beyond. Stan differs by nature from generative probabilistic programming languages like Church, Anglican, or Pyro. This paper presents a comprehensive compilation scheme to compile any Stan model to a generative language and proves its correctness. This sheds a clearer light on the relative expressiveness of different kinds of probabilistic languages and opens the door to combining their mutual strengths. Specifically, we use our compilation scheme to build a compiler from Stan to Pyro and extend Stan with support for explicit variational inference guides and deep probabilistic models. That way, users familiar with Stan get access to new features without having to learn a fundamentally new language. Overall, our paper clarifies the relationship between declarative and generative probabilistic programming languages and is a step towards making deep probabilistic programming easier
    corecore