47 research outputs found

    Embedded Process Functional Language

    Get PDF
    Embedded systems represent an important area of computer engineering. Demands on embedded applications are increasing. To address these issues, different agile methodologies are used in traditional desktop applications today. These agile methodologies often try to eliminate development risks in early design phases. Possible solution is to create a working model or a prototype of critical system parts. Then we can use this prototype in negotiation with customer and also to prove technological aspects of our solution. From this perspective functional languages are very attractive. They have excellent abstraction mechanism and they can be used as a tool producing a kind of executable design. In this paper we present our work on a domain specific functional language targeted to embedded systems Embedded process functional language. Created language works on a high level of abstraction and it uses other technologies (even other functional languages) created for embedded systems development on lower levels. It can be used like a modeling or a prototyping language in early development phases

    Staging Telephony Service Creation: A Language Approach

    Get PDF
    International audienceThe open-endedness of telephony platforms is creating expectations among users, ranging from end-users to administrators, to create services dedicated to their activities. Not only is the population of developers heterogeneous, but the technologies underlying modern telephony range over a variety of areas such as multimedia, databases, web services, and distributed systems. This situation drastically widens the expertise required for service creation. We propose an approach to coping with the heterogeneity of both the service developers and the technologies underlying modern telephony. Our approach is based on programming languages. It consists of providing a language that is specific to each developer community with respect to its expertise (e.g., programming skills) and the target application area (e.g., administration). Such languages, called Domain-Specific Languages (DSLs), are organized in layers, accounting for abstraction levels. Our layered approach to telephony service creation is illustrated by two high-level DSLs for end-user service creation, requiring no programming skills, and an expressive DSL enabling the development of expert-level telephony services. We show that layering DSLs greatly facilitates their implementation and verification of telephony-specific properties by leveraging on high-level tools

    Memoized zipper-based attribute grammars and their higher order extension

    Get PDF
    Attribute grammars are a powerfull, well-known formalism to implement and reason about programs which, by design, are conveniently modular. In this work we focus on a state of the art zipper-based embedding of classic attribute grammars and higher-order attribute grammars. We improve their execution performance through controlling attribute (re)evaluation by means of memoization techniques. We present the results of our optimizations by comparing their impact in various implementations of different, well-studied, attribute grammars and their Higher-Order extensions. (C) 2018 Elsevier B.V. All rights reserved.- (undefined

    Software product line testing - a systematic mapping study

    Get PDF
    Context: Software product lines (SPL) are used in industry to achieve more efficient software development. However, the testing side of SPL is underdeveloped. Objective: This study aims at surveying existing research on SPL testing in order to identify useful approaches and needs for future research. Method: A systematic mapping study is launched to find as much literature as possible, and the 64 papers found are classified with respect to focus, research type and contribution type. Results: A majority of the papers are of proposal research types (64 %). System testing is the largest group with respect to research focus (40%), followed by management (23%). Method contributions are in majority. Conclusions: More validation and evaluation research is needed to provide a better foundation for SPL testing

    Programming with C++ concepts

    Get PDF
    AbstractThis paper explores the definition, applications, and limitations of concepts and concept maps in C++, with a focus on library composition. We also compare and contrast concepts to adaptation mechanisms in other languages.Efficient, non-intrusive adaptation mechanisms are essential when adapting data structures to a library’s API. Development with reusable components is a widely practiced method of building software. Components vary in form, ranging from source code to non-modifiable binary libraries. The Concepts language features, slated to appear in the next version of C++, have been designed with such compositions in mind, promising an improved ability to create generic, non-intrusive, efficient, and identity-preserving adapters.We report on two cases of data structure adaptation between different libraries, and illustrate best practices and idioms. First, we adapt GUI widgets from several libraries, with differing APIs, for use with a generic layout engine. We further develop this example to describe the run-time concept idiom, extending the applicability of concepts to domains where run-time polymorphism is required. Second, we compose an image processing library and a graph algorithm library, by making use of a transparent adaptation layer, enabling the efficient application of graph algorithms to the image processing domain. We use the adaptation layer to realize a few key algorithms, and report little or no performance degradation

    Model driven product line engineering : core asset and process implications

    Get PDF
    Reuse is at the heart of major improvements in productivity and quality in Software Engineering. Both Model Driven Engineering (MDE) and Software Product Line Engineering (SPLE) are software development paradigms that promote reuse. Specifically, they promote systematic reuse and a departure from craftsmanship towards an industrialization of the software development process. MDE and SPLE have established their benefits separately. Their combination, here called Model Driven Product Line Engineering (MDPLE), gathers together the advantages of both. Nevertheless, this blending requires MDE to be recasted in SPLE terms. This has implications on both the core assets and the software development process. The challenges are twofold: (i) models become central core assets from which products are obtained and (ii) the software development process needs to cater for the changes that SPLE and MDE introduce. This dissertation proposes a solution to the first challenge following a feature oriented approach, with an emphasis on reuse and early detection of inconsistencies. The second part is dedicated to assembly processes, a clear example of the complexity MDPLE introduces in software development processes. This work advocates for a new discipline inside the general software development process, i.e., the Assembly Plan Management, which raises the abstraction level and increases reuse in such processes. Different case studies illustrate the presented ideas.This work was hosted by the University of the Basque Country (Faculty of Computer Sciences). The author enjoyed a doctoral grant from the Basque Goverment under the “Researchers Training Program” during the years 2005 to 2009. The work was was co-supported by the Spanish Ministry of Education, and the European Social Fund under contracts WAPO (TIN2005-05610) and MODELINE (TIN2008-06507-C02-01)

    Implementing an Embedded Compiler using Program Transformation Rules

    Get PDF
    (To appear)International audienceDomain-specific languages (DSLs) are well-recognized to ease programming and improve robustness for a specific domain, by providing high-level domain-specific notations and verifications of domain-specific properties. The compiler of a DSL, however, is often difficult to develop and maintain, due to the need to define a specific treatment for a large and potentially increasing number of language constructs. To address this issue, we propose an approach for specifying a DSL compiler and verifier using control-flow sensitive concrete-syntax based matching rules. These rules either collect information about the source code to carry out verifications or perform transformations to carry out compilation. Because rules only mention the relevant constructs, using their concrete syntax, and hide the complexity of control-flow graph traversal, it is easy to understand the purpose of each rule. Furthermore, new compilation steps can be added using only a small number of lines of code. We explore this approach in the context of the z2z DSL for network gateway development, and show that the core of its compiler and verifier can be implemented in this manner
    corecore