15,716 research outputs found

    Scalable Recollections for Continual Lifelong Learning

    Full text link
    Given the recent success of Deep Learning applied to a variety of single tasks, it is natural to consider more human-realistic settings. Perhaps the most difficult of these settings is that of continual lifelong learning, where the model must learn online over a continuous stream of non-stationary data. A successful continual lifelong learning system must have three key capabilities: it must learn and adapt over time, it must not forget what it has learned, and it must be efficient in both training time and memory. Recent techniques have focused their efforts primarily on the first two capabilities while questions of efficiency remain largely unexplored. In this paper, we consider the problem of efficient and effective storage of experiences over very large time-frames. In particular we consider the case where typical experiences are O(n) bits and memories are limited to O(k) bits for k << n. We present a novel scalable architecture and training algorithm in this challenging domain and provide an extensive evaluation of its performance. Our results show that we can achieve considerable gains on top of state-of-the-art methods such as GEM.Comment: AAAI 201

    Lifelong Generative Modeling

    Full text link
    Lifelong learning is the problem of learning multiple consecutive tasks in a sequential manner, where knowledge gained from previous tasks is retained and used to aid future learning over the lifetime of the learner. It is essential towards the development of intelligent machines that can adapt to their surroundings. In this work we focus on a lifelong learning approach to unsupervised generative modeling, where we continuously incorporate newly observed distributions into a learned model. We do so through a student-teacher Variational Autoencoder architecture which allows us to learn and preserve all the distributions seen so far, without the need to retain the past data nor the past models. Through the introduction of a novel cross-model regularizer, inspired by a Bayesian update rule, the student model leverages the information learned by the teacher, which acts as a probabilistic knowledge store. The regularizer reduces the effect of catastrophic interference that appears when we learn over sequences of distributions. We validate our model's performance on sequential variants of MNIST, FashionMNIST, PermutedMNIST, SVHN and Celeb-A and demonstrate that our model mitigates the effects of catastrophic interference faced by neural networks in sequential learning scenarios.Comment: 32 page

    Continual Classification Learning Using Generative Models

    Full text link
    Continual learning is the ability to sequentially learn over time by accommodating knowledge while retaining previously learned experiences. Neural networks can learn multiple tasks when trained on them jointly, but cannot maintain performance on previously learned tasks when tasks are presented one at a time. This problem is called catastrophic forgetting. In this work, we propose a classification model that learns continuously from sequentially observed tasks, while preventing catastrophic forgetting. We build on the lifelong generative capabilities of [10] and extend it to the classification setting by deriving a new variational bound on the joint log likelihood, logp(x;y)\log p(x; y).Comment: 5 pages, 4 figures, under review in Continual learning Workshop NIPS 201

    Lifelong Learning of Spatiotemporal Representations with Dual-Memory Recurrent Self-Organization

    Get PDF
    Artificial autonomous agents and robots interacting in complex environments are required to continually acquire and fine-tune knowledge over sustained periods of time. The ability to learn from continuous streams of information is referred to as lifelong learning and represents a long-standing challenge for neural network models due to catastrophic forgetting. Computational models of lifelong learning typically alleviate catastrophic forgetting in experimental scenarios with given datasets of static images and limited complexity, thereby differing significantly from the conditions artificial agents are exposed to. In more natural settings, sequential information may become progressively available over time and access to previous experience may be restricted. In this paper, we propose a dual-memory self-organizing architecture for lifelong learning scenarios. The architecture comprises two growing recurrent networks with the complementary tasks of learning object instances (episodic memory) and categories (semantic memory). Both growing networks can expand in response to novel sensory experience: the episodic memory learns fine-grained spatiotemporal representations of object instances in an unsupervised fashion while the semantic memory uses task-relevant signals to regulate structural plasticity levels and develop more compact representations from episodic experience. For the consolidation of knowledge in the absence of external sensory input, the episodic memory periodically replays trajectories of neural reactivations. We evaluate the proposed model on the CORe50 benchmark dataset for continuous object recognition, showing that we significantly outperform current methods of lifelong learning in three different incremental learning scenario
    corecore