199 research outputs found

    GAN-based Virtual Re-Staining: A Promising Solution for Whole Slide Image Analysis

    Full text link
    Histopathological cancer diagnosis is based on visual examination of stained tissue slides. Hematoxylin and eosin (H\&E) is a standard stain routinely employed worldwide. It is easy to acquire and cost effective, but cells and tissue components show low-contrast with varying tones of dark blue and pink, which makes difficult visual assessments, digital image analysis, and quantifications. These limitations can be overcome by IHC staining of target proteins of the tissue slide. IHC provides a selective, high-contrast imaging of cells and tissue components, but their use is largely limited by a significantly more complex laboratory processing and high cost. We proposed a conditional CycleGAN (cCGAN) network to transform the H\&E stained images into IHC stained images, facilitating virtual IHC staining on the same slide. This data-driven method requires only a limited amount of labelled data but will generate pixel level segmentation results. The proposed cCGAN model improves the original network \cite{zhu_unpaired_2017} by adding category conditions and introducing two structural loss functions, which realize a multi-subdomain translation and improve the translation accuracy as well. % need to give reasons here. Experiments demonstrate that the proposed model outperforms the original method in unpaired image translation with multi-subdomains. We also explore the potential of unpaired images to image translation method applied on other histology images related tasks with different staining techniques

    Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology

    Full text link
    Stain variation is a phenomenon observed when distinct pathology laboratories stain tissue slides that exhibit similar but not identical color appearance. Due to this color shift between laboratories, convolutional neural networks (CNNs) trained with images from one lab often underperform on unseen images from the other lab. Several techniques have been proposed to reduce the generalization error, mainly grouped into two categories: stain color augmentation and stain color normalization. The former simulates a wide variety of realistic stain variations during training, producing stain-invariant CNNs. The latter aims to match training and test color distributions in order to reduce stain variation. For the first time, we compared some of these techniques and quantified their effect on CNN classification performance using a heterogeneous dataset of hematoxylin and eosin histopathology images from 4 organs and 9 pathology laboratories. Additionally, we propose a novel unsupervised method to perform stain color normalization using a neural network. Based on our experimental results, we provide practical guidelines on how to use stain color augmentation and stain color normalization in future computational pathology applications.Comment: Accepted in the Medical Image Analysis journa

    Generative deep learning in digital pathology workflows

    Get PDF
    Funding: Supported by the Sir James Mackenzie Institute for Early Diagnosis, University of St Andrews and Industrial Centre for Artificial Intelligence Research in Digital Diagnostics (grant number TS/S013121/1).Many modern histopathology laboratories are in the process of digitising their workflows. Once images of the tissue exist as digital data, it becomes feasible to research the augmentation or automation of clinical reporting and diagnosis. The application of modern computer vision techniques, based on Deep Learning, promise systems that can identify pathologies in slide images with a high degree of accuracy. Generative modelling is an approach to machine learning and deep learning that can be used to transform and generate data. It can be applied to a broad range of tasks within digital pathology including the removal of color and intensity artefacts, the adaption of images in one domain into those of another, and the generation of synthetic digital tissue samples. This review provides an introduction to the topic, considers these applications, and discusses some future directions for generative models within histopathology.PostprintPeer reviewe

    ViT-DAE: Transformer-driven Diffusion Autoencoder for Histopathology Image Analysis

    Full text link
    Generative AI has received substantial attention in recent years due to its ability to synthesize data that closely resembles the original data source. While Generative Adversarial Networks (GANs) have provided innovative approaches for histopathological image analysis, they suffer from limitations such as mode collapse and overfitting in discriminator. Recently, Denoising Diffusion models have demonstrated promising results in computer vision. These models exhibit superior stability during training, better distribution coverage, and produce high-quality diverse images. Additionally, they display a high degree of resilience to noise and perturbations, making them well-suited for use in digital pathology, where images commonly contain artifacts and exhibit significant variations in staining. In this paper, we present a novel approach, namely ViT-DAE, which integrates vision transformers (ViT) and diffusion autoencoders for high-quality histopathology image synthesis. This marks the first time that ViT has been introduced to diffusion autoencoders in computational pathology, allowing the model to better capture the complex and intricate details of histopathology images. We demonstrate the effectiveness of ViT-DAE on three publicly available datasets. Our approach outperforms recent GAN-based and vanilla DAE methods in generating realistic images.Comment: Submitted to MICCAI 202

    Domain Generalization in Computational Pathology: Survey and Guidelines

    Full text link
    Deep learning models have exhibited exceptional effectiveness in Computational Pathology (CPath) by tackling intricate tasks across an array of histology image analysis applications. Nevertheless, the presence of out-of-distribution data (stemming from a multitude of sources such as disparate imaging devices and diverse tissue preparation methods) can cause \emph{domain shift} (DS). DS decreases the generalization of trained models to unseen datasets with slightly different data distributions, prompting the need for innovative \emph{domain generalization} (DG) solutions. Recognizing the potential of DG methods to significantly influence diagnostic and prognostic models in cancer studies and clinical practice, we present this survey along with guidelines on achieving DG in CPath. We rigorously define various DS types, systematically review and categorize existing DG approaches and resources in CPath, and provide insights into their advantages, limitations, and applicability. We also conduct thorough benchmarking experiments with 28 cutting-edge DG algorithms to address a complex DG problem. Our findings suggest that careful experiment design and CPath-specific Stain Augmentation technique can be very effective. However, there is no one-size-fits-all solution for DG in CPath. Therefore, we establish clear guidelines for detecting and managing DS depending on different scenarios. While most of the concepts, guidelines, and recommendations are given for applications in CPath, we believe that they are applicable to most medical image analysis tasks as well.Comment: Extended Versio

    Multi-domain stain normalization for digital pathology: A cycle-consistent adversarial network for whole slide images

    Full text link
    The variation in histologic staining between different medical centers is one of the most profound challenges in the field of computer-aided diagnosis. The appearance disparity of pathological whole slide images causes algorithms to become less reliable, which in turn impedes the wide-spread applicability of downstream tasks like cancer diagnosis. Furthermore, different stainings lead to biases in the training which in case of domain shifts negatively affect the test performance. Therefore, in this paper we propose MultiStain-CycleGAN, a multi-domain approach to stain normalization based on CycleGAN. Our modifications to CycleGAN allow us to normalize images of different origins without retraining or using different models. We perform an extensive evaluation of our method using various metrics and compare it to commonly used methods that are multi-domain capable. First, we evaluate how well our method fools a domain classifier that tries to assign a medical center to an image. Then, we test our normalization on the tumor classification performance of a downstream classifier. Furthermore, we evaluate the image quality of the normalized images using the Structural similarity index and the ability to reduce the domain shift using the Fr\'echet inception distance. We show that our method proves to be multi-domain capable, provides the highest image quality among the compared methods, and can most reliably fool the domain classifier while keeping the tumor classifier performance high. By reducing the domain influence, biases in the data can be removed on the one hand and the origin of the whole slide image can be disguised on the other, thus enhancing patient data privacy.Comment: 19 pages, 11 figures, 3 table
    corecore