1,161 research outputs found

    Leveraging Machine Learning for Network Intrusion Detection in Social Internet Of Things (SIoT) Systems

    Get PDF
    This research investigates the application of machine learning models for network intrusion detection in the context of Social Internet of Things (SIoT) systems. We evaluate Convolutional Neural Network with Generative Adversarial Network (CNN+GAN), Generative Adversarial Network (GAN), and Logistic Regression models using the CIC IoT Dataset 2023. CNN+GAN emerges as a promising approach, exhibiting superior performance in accurately identifying diverse intrusion types. Our study emphasizes the significance of advanced machine learning techniques in enhancing SIoT security by effectively detecting anomalous behaviours within socially interconnected environments. The findings provide practical insights for selecting suitable intrusion detection methods and highlight the need for ongoing research to address evolving intrusion scenarios and vulnerabilities in SIoT ecosystems

    Performance Evaluation and Validation of Intelligent Security Mechanism in Software Defined Network

    Get PDF
    Network attacks are discovered using intrusion detection systems (IDS), one of the most crucial security solutions. Machine learning techniques-based intrusion detection approaches have been rapidly created as a result of the widespread use of standard machine learning algorithms in the security field. Unfortunately, as technology has advanced and there have been faults in the machine learning-based intrusion detection system, the system has consistently failed to fulfill the standards for cyber security. Generative adversarial networks (GANs) have drawn a lot of interest recently and have been utilized widely in anomaly detection due to their enormous capacity for learning difficult high-dimensional real time data distribution. Traditional machine learning algorithms for intrusion detection have a number of drawbacks that deep learning techniques can significantly mitigate. With the help of a real time dataset, this work suggests employing GANs and its variants to detect network intrusions in SDN. The feasibility and comparison results are also presented. For different kinds of datasets, the BiGAN outcomes outperform the GAN

    Realistic adversarial machine learning to improve network intrusion detection

    Get PDF
    Modern organizations can significantly benefit from the use of Artificial Intelligence (AI), and more specifically Machine Learning (ML), to tackle the growing number and increasing sophistication of cyber-attacks targeting their business processes. However, there are several technological and ethical challenges that undermine the trustworthiness of AI. One of the main challenges is the lack of robustness, which is an essential property to ensure that ML is used in a secure way. Improving robustness is no easy task because ML is inherently susceptible to adversarial examples: data samples with subtle perturbations that cause unexpected behaviors in ML models. ML engineers and security practitioners still lack the knowledge and tools to prevent such disruptions, so adversarial examples pose a major threat to ML and to the intelligent Network Intrusion Detection (NID) systems that rely on it. This thesis presents a methodology for a trustworthy adversarial robustness analysis of multiple ML models, and an intelligent method for the generation of realistic adversarial examples in complex tabular data domains like the NID domain: Adaptative Perturbation Pattern Method (A2PM). It is demonstrated that a successful adversarial attack is not guaranteed to be a successful cyber-attack, and that adversarial data perturbations can only be realistic if they are simultaneously valid and coherent, complying with the domain constraints of a real communication network and the class-specific constraints of a certain cyber-attack class. A2PM can be used for adversarial attacks, to iteratively cause misclassifications, and adversarial training, to perform data augmentation with slightly perturbed data samples. Two case studies were conducted to evaluate its suitability for the NID domain. The first verified that the generated perturbations preserved both validity and coherence in Enterprise and Internet-of Things (IoT) network scenarios, achieving realism. The second verified that adversarial training with simple perturbations enables the models to retain a good generalization to regular IoT network traffic flows, in addition to being more robust to adversarial examples. The key takeaway of this thesis is: ML models can be incredibly valuable to improve a cybersecurity system, but their own vulnerabilities must not be disregarded. It is essential to continue the research efforts to improve the security and trustworthiness of ML and of the intelligent systems that rely on it.Organizações modernas podem beneficiar significativamente do uso de Inteligência Artificial (AI), e mais especificamente Aprendizagem Automática (ML), para enfrentar a crescente quantidade e sofisticação de ciberataques direcionados aos seus processos de negócio. No entanto, há vários desafios tecnológicos e éticos que comprometem a confiabilidade da AI. Um dos maiores desafios é a falta de robustez, que é uma propriedade essencial para garantir que se usa ML de forma segura. Melhorar a robustez não é uma tarefa fácil porque ML é inerentemente suscetível a exemplos adversos: amostras de dados com perturbações subtis que causam comportamentos inesperados em modelos ML. Engenheiros de ML e profissionais de segurança ainda não têm o conhecimento nem asferramentas necessárias para prevenir tais disrupções, por isso os exemplos adversos representam uma grande ameaça a ML e aos sistemas de Deteção de Intrusões de Rede (NID) que dependem de ML. Esta tese apresenta uma metodologia para uma análise da robustez de múltiplos modelos ML, e um método inteligente para a geração de exemplos adversos realistas em domínios de dados tabulares complexos como o domínio NID: Método de Perturbação com Padrões Adaptativos (A2PM). É demonstrado que um ataque adverso bem-sucedido não é garantidamente um ciberataque bem-sucedido, e que as perturbações adversas só são realistas se forem simultaneamente válidas e coerentes, cumprindo as restrições de domínio de uma rede de computadores real e as restrições específicas de uma certa classe de ciberataque. A2PM pode ser usado para ataques adversos, para iterativamente causar erros de classificação, e para treino adverso, para realizar aumento de dados com amostras ligeiramente perturbadas. Foram efetuados dois casos de estudo para avaliar a sua adequação ao domínio NID. O primeiro verificou que as perturbações preservaram tanto a validade como a coerência em cenários de redes Empresariais e Internet-das-Coisas (IoT), alcançando o realismo. O segundo verificou que o treino adverso com perturbações simples permitiu aos modelos reter uma boa generalização a fluxos de tráfego de rede IoT, para além de serem mais robustos contra exemplos adversos. A principal conclusão desta tese é: os modelos ML podem ser incrivelmente valiosos para melhorar um sistema de cibersegurança, mas as suas próprias vulnerabilidades não devem ser negligenciadas. É essencial continuar os esforços de investigação para melhorar a segurança e a confiabilidade de ML e dos sistemas inteligentes que dependem de ML
    corecore