214 research outputs found

    FMNet: Latent Feature-wise Mapping Network for Cleaning up Noisy Micro-Doppler Spectrogram

    Get PDF
    Micro-Doppler signatures contain considerable information about target dynamics. However, the radar sensing systems are easily affected by noisy surroundings, resulting in uninterpretable motion patterns on the micro-Doppler spectrogram. Meanwhile, radar returns often suffer from multipath, clutter and interference. These issues lead to difficulty in, for example motion feature extraction, activity classification using micro Doppler signatures (μ\mu-DS), etc. In this paper, we propose a latent feature-wise mapping strategy, called Feature Mapping Network (FMNet), to transform measured spectrograms so that they more closely resemble the output from a simulation under the same conditions. Based on measured spectrogram and the matched simulated data, our framework contains three parts: an Encoder which is used to extract latent representations/features, a Decoder outputs reconstructed spectrogram according to the latent features, and a Discriminator minimizes the distance of latent features of measured and simulated data. We demonstrate the FMNet with six activities data and two experimental scenarios, and final results show strong enhanced patterns and can keep actual motion information to the greatest extent. On the other hand, we also propose a novel idea which trains a classifier with only simulated data and predicts new measured samples after cleaning them up with the FMNet. From final classification results, we can see significant improvements

    Transfer Learning from Audio Deep Learning Models for Micro-Doppler Activity Recognition

    Get PDF
    This paper presents a mechanism to transform radio micro-Doppler signatures into a pseudo-audio representation, which results in significant improvements in transfer learning from a deep learning model trained on audio. We also demonstrate that transfer learning from a deep learning model trained on audio is more effective than transfer learning from a model trained on images, which suggests machine learning methods used to analyse audio can be leveraged for micro-Doppler. Finally, we utilise an occlusion method to gain an insight into how the deep learning model interprets the micro-Doppler signatures and the subsequent pseudo-audio representations

    Advanced Human Activity Recognition through Data Augmentation and Feature Concatenation of Micro-Doppler Signatures

    Get PDF
    Developing accurate classification models for radar-based Human Activity Recognition (HAR), capable of solving real-world problems, depends heavily on the amount of available data. In this paper, we propose a simple, effective, and generalizable data augmentation strategy along with preprocessing for micro-Doppler signatures to enhance recognition performance. By leveraging the decomposition properties of the Discrete Wavelet Transform (DWT), new samples are generated with distinct characteristics that do not overlap with those of the original samples. The micro-Doppler signatures are projected onto the DWT space for the decomposition process using the Haar wavelet. The returned decomposition components are used in different configurations to generate new data. Three new samples are obtained from a single spectrogram, which increases the amount of training data without creating duplicates. Next, the augmented samples are processed using the Sobel filter. This step allows each sample to be expanded into three representations, including the gradient in the x-direction (Dx), y-direction (Dy), and both x- and y-directions (Dxy). These representations are used as input for training a three-input convolutional neural network-long short-term memory support vector machine (CNN-LSTM-SVM) model. We have assessed the feasibility of our solution by evaluating it on three datasets containing micro-Doppler signatures of human activities, including Frequency Modulated Continuous Wave (FMCW) 77 GHz, FMCW 24 GHz, and Impulse Radio Ultra-Wide Band (IR-UWB) 10 GHz datasets. Several experiments have been carried out to evaluate the model\u27s performance with the inclusion of additional samples. The model was trained from scratch only on the augmented samples and tested on the original samples. Our augmentation approach has been thoroughly evaluated using various metrics, including accuracy, precision, recall, and F1-score. The results demonstrate a substantial improvement in the recognition rate and effectively alleviate the overfitting effect. Accuracies of 96.47%, 94.27%, and 98.18% are obtained for the FMCW 77 GHz, FMCW 24 GHz, and IR- UWB 10 GHz datasets, respectively. The findings of the study demonstrate the utility of DWT to enrich micro-Doppler training samples to improve HAR performance. Furthermore, the processing step was found to be efficient in enhancing the classification accuracy, achieving 96.78%, 96.32%, and 100% for the FMCW 77 GHz, FMCW 24 GHz, and IR-UWB 10 GHz datasets, respectively
    • …
    corecore