5,271 research outputs found

    SurfNet: Generating 3D shape surfaces using deep residual networks

    Full text link
    3D shape models are naturally parameterized using vertices and faces, \ie, composed of polygons forming a surface. However, current 3D learning paradigms for predictive and generative tasks using convolutional neural networks focus on a voxelized representation of the object. Lifting convolution operators from the traditional 2D to 3D results in high computational overhead with little additional benefit as most of the geometry information is contained on the surface boundary. Here we study the problem of directly generating the 3D shape surface of rigid and non-rigid shapes using deep convolutional neural networks. We develop a procedure to create consistent `geometry images' representing the shape surface of a category of 3D objects. We then use this consistent representation for category-specific shape surface generation from a parametric representation or an image by developing novel extensions of deep residual networks for the task of geometry image generation. Our experiments indicate that our network learns a meaningful representation of shape surfaces allowing it to interpolate between shape orientations and poses, invent new shape surfaces and reconstruct 3D shape surfaces from previously unseen images.Comment: CVPR 2017 pape

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Score-PA: Score-based 3D Part Assembly

    Full text link
    Autonomous 3D part assembly is a challenging task in the areas of robotics and 3D computer vision. This task aims to assemble individual components into a complete shape without relying on predefined instructions. In this paper, we formulate this task from a novel generative perspective, introducing the Score-based 3D Part Assembly framework (Score-PA) for 3D part assembly. Knowing that score-based methods are typically time-consuming during the inference stage. To address this issue, we introduce a novel algorithm called the Fast Predictor-Corrector Sampler (FPC) that accelerates the sampling process within the framework. We employ various metrics to assess assembly quality and diversity, and our evaluation results demonstrate that our algorithm outperforms existing state-of-the-art approaches. We release our code at https://github.com/J-F-Cheng/Score-PA_Score-based-3D-Part-Assembly.Comment: BMVC 202

    Modeling variation of human motion

    Get PDF
    The synthesis of realistic human motion with large variations and different styles has a growing interest in simulation applications such as the game industry, psychological experiments, and ergonomic analysis. The statistical generative models are used by motion controllers in our motion synthesis framework to create new animations for different scenarios. Data-driven motion synthesis approaches are powerful tools for producing high-fidelity character animations. With the development of motion capture technologies, more and more motion data are publicly available now. However, how to efficiently reuse a large amount of motion data to create new motions for arbitrary scenarios poses challenges, especially for unsupervised motion synthesis. This thesis presents a series of works that analyze and model the variations of human motion data. The goal is to learn statistical generative models to create any number of new human animations with rich variations and styles. The work of the thesis will be presented in three main chapters. We first explore how variation is represented in motion data. Learning a compact latent space that can expressively contain motion variation is essential for modeling motion data. We propose a novel motion latent space learning approach that can intrinsically tackle the spatialtemporal properties of motion data. Secondly, we present our Morphable Graph framework for human motion modeling and synthesis for assembly workshop scenarios. A series of studies have been conducted to apply statistical motion modeling and synthesis approaches for complex assembly workshop use cases. Learning the distribution of motion data can provide a compact representation of motion variations and convert motion synthesis tasks to optimization problems. Finally, we show how the style variations of human activities can be modeled with a limited number of examples. Natural human movements display a rich repertoire of styles and personalities. However, it is difficult to get enough examples for data-driven approaches. We propose a conditional variational autoencoder (CVAE) to combine large variations in the neutral motion database and style information from a limited number of examples.Die Synthese realistischer menschlicher Bewegungen mit großen Variationen und unterschiedlichen Stilen ist für Simulationsanwendungen wie die Spieleindustrie, psychologische Experimente und ergonomische Analysen von wachsendem Interesse. Datengetriebene Bewegungssyntheseansätze sind leistungsstarke Werkzeuge für die Erstellung realitätsgetreuer Charakteranimationen. Mit der Entwicklung von Motion-Capture-Technologien sind nun immer mehr Motion-Daten öffentlich verfügbar. Die effiziente Wiederverwendung einer großen Menge von Motion-Daten zur Erstellung neuer Bewegungen für beliebige Szenarien stellt jedoch eine Herausforderung dar, insbesondere für die unüberwachte Bewegungssynthesemethoden. Das Lernen der Verteilung von Motion-Daten kann eine kompakte Repräsentation von Bewegungsvariationen liefern und Bewegungssyntheseaufgaben in Optimierungsprobleme umwandeln. In dieser Dissertation werden eine Reihe von Arbeiten vorgestellt, die die Variationen menschlicher Bewegungsdaten analysieren und modellieren. Das Ziel ist es, statistische generative Modelle zu erlernen, um eine beliebige Anzahl neuer menschlicher Animationen mit reichen Variationen und Stilen zu erstellen. In unserem Bewegungssynthese-Framework werden die statistischen generativen Modelle von Bewegungscontrollern verwendet, um neue Animationen für verschiedene Szenarien zu erstellen. Die Arbeit in dieser Dissertation wird in drei Hauptkapiteln vorgestellt. Wir untersuchen zunächst, wie Variation in Bewegungsdaten dargestellt wird. Das Erlernen eines kompakten latenten Raums, der Bewegungsvariationen ausdrucksvoll enthalten kann, ist für die Modellierung von Bewegungsdaten unerlässlich. Wir schlagen einen neuartigen Ansatz zum Lernen des latenten Bewegungsraums vor, der die räumlich-zeitlichen Eigenschaften von Bewegungsdaten intrinsisch angehen kann. Zweitens stellen wir unser Morphable Graph Framework für die menschliche Bewegungsmodellierung und -synthese für Montage-Workshop- Szenarien vor. Es wurde eine Reihe von Studien durchgeführt, um statistische Bewegungsmodellierungs und syntheseansätze für komplexe Anwendungsfälle in Montagewerkstätten anzuwenden. Schließlich zeigen wir anhand einer begrenzten Anzahl von Beispielen, wie die Stilvariationen menschlicher Aktivitäten modelliertwerden können. Natürliche menschliche Bewegungen weisen ein reiches Repertoire an Stilen und Persönlichkeiten auf. Es ist jedoch schwierig, genügend Beispiele für datengetriebene Ansätze zu erhalten. Wir schlagen einen Conditional Variational Autoencoder (CVAE) vor, um große Variationen in der neutralen Bewegungsdatenbank und Stilinformationen aus einer begrenzten Anzahl von Beispielen zu kombinieren. Wir zeigen, dass unser Ansatz eine beliebige Anzahl von natürlich aussehenden Variationen menschlicher Bewegungen mit einem ähnlichen Stil wie das Ziel erzeugen kann

    Towards the Evolution of Novel Vertical-Axis Wind Turbines

    Full text link
    Renewable and sustainable energy is one of the most important challenges currently facing mankind. Wind has made an increasing contribution to the world's energy supply mix, but still remains a long way from reaching its full potential. In this paper, we investigate the use of artificial evolution to design vertical-axis wind turbine prototypes that are physically instantiated and evaluated under approximated wind tunnel conditions. An artificial neural network is used as a surrogate model to assist learning and found to reduce the number of fabrications required to reach a higher aerodynamic efficiency, resulting in an important cost reduction. Unlike in other approaches, such as computational fluid dynamics simulations, no mathematical formulations are used and no model assumptions are made.Comment: 14 pages, 11 figure

    The Shape Part Slot Machine: Contact-based Reasoning for Generating 3D Shapes from Parts

    Full text link
    We present the Shape Part Slot Machine, a new method for assembling novel 3D shapes from existing parts by performing contact-based reasoning. Our method represents each shape as a graph of ``slots,'' where each slot is a region of contact between two shape parts. Based on this representation, we design a graph-neural-network-based model for generating new slot graphs and retrieving compatible parts, as well as a gradient-descent-based optimization scheme for assembling the retrieved parts into a complete shape that respects the generated slot graph. This approach does not require any semantic part labels; interestingly, it also does not require complete part geometries -- reasoning about the slots proves sufficient to generate novel, high-quality 3D shapes. We demonstrate that our method generates shapes that outperform existing modeling-by-assembly approaches regarding quality, diversity, and structural complexity.Comment: European Conference on Computer Vision (ECCV) 202
    corecore