5,637 research outputs found

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Innovative solar energy technologies and control algorithms for enhancing demand-side management in buildings

    Get PDF
    The present thesis investigates innovative energy technologies and control algorithms for enhancing demand-side management in buildings. The work focuses on an innovative low-temperature solar thermal system for supplying space heating demand of buildings. This technology is used as a case study to explore possible solutions to fulfil the mismatch between energy production and its exploitation in building. This shortcoming represents the primary issue of renewable energy sources. Technologies enhancing the energy storage capacity and active demand-side management or demand-response strategies must be implemented in buildings. For these purposes, it is possible to employ hardware or software solutions. The hardware solutions for thermal demand response of buildings are those technologies that allow the energy loads to be permanently shifted or mitigated. The software solutions for demand response are those that integrate an intelligent supervisory layer in the building automation (or management) systems. The present thesis approaches the problem from both the hardware technologies side and the software solutions side. This approach enables the mutual relationships and interactions between the strategies to be appropriately measured. The thesis can be roughly divided in two parts. The first part of the thesis focuses on an innovative solar thermal system exploiting a novel heat transfer fluid and storage media based on micro-encapsulated Phase Change Material slurry. This material leads the system to enhance latent heat exchange processes and increasing the overall performance. The features of Phase Change Material slurry are investigated experimentally and theoretically. A full-scale prototype of this innovative solar system enhancing latent heat exchange is conceived, designed and realised. An experimental campaign on the prototype is used to calibrate and validate a numerical model of the solar thermal system. This model is developed in this thesis to define the thermo-energetic behaviour of the technology. It consists of two mathematical sub-models able to describe the power/energy balances of the flat-plate solar thermal collector and the thermal energy storage unit respectively. In closed-loop configuration, all the Key Performance Indicators used to assess the reliability of the model indicate an excellent comparison between the system monitored outputs and simulation results. Simulation are performed both varying parametrically the boundary condition and investigating the long-term system performance in different climatic locations. Compared to a traditional water-based system used as a reference baseline, the simulation results show that the innovative system could improve the production of useful heat up to 7 % throughout the year and 19 % during the heating season. Once the hardware technology has been defined, the implementation of an innovative control method is necessary to enhance the operational efficiency of the system. This is the primary focus of the second part of the thesis. A specific solution is considered particularly promising for this purpose: the adoption of Model Predictive Control (MPC) formulations for improving the system thermal and energy management. Firstly, this thesis provides a robust and complete framework of the steps required to define an MPC problem for building processes regulation correctly. This goal is reached employing an extended review of the scientific literature and practical application concerning MPC application for building management. Secondly, an MPC algorithm is formulated to regulate the full-scale solar thermal prototype. A testbed virtual environment is developed to perform closed-loop simulations. The existing rule-based control logic is employed as the reference baseline. Compared to the baseline, the MPC algorithm produces energy savings up to 19.2 % with lower unmet energy demand

    Marine Power Systems

    Get PDF
    Marine power systems have been designed to be a safer alternative to stationary plants in order to adhere to the regulations of classification societies. Marine steam boilers recently achieved 10 MPa pressure, in comparison to stationary plants, where a typical boiler pressure of 17 MPa was the standard for years. The latest land-based, ultra-supercritical steam boilers reach 25 MPa pressure and 620 °C temperatures, which increases plant efficiency and reduces fuel consumption. There is little chance that such a plant concept could be applied to ships. The reliability of marine power systems has to be higher due to the lack of available spare parts and services that are available for shore power systems. Some systems are still very expensive and are not able to be widely utilized for commercial merchant fleets such as COGAS, mainly due to the high cost of gas turbines. Submarine vehicles are also part of marine power systems, which have to be reliable and accurate in their operation due to their distant control centers. Materials that are used in marine environments are prone to faster corrosive wear, so special care also should be taken in this regard. The main aim of this Special Issue is to discuss the options and possibilities of utilizing energy in a more economical way, taking into account the reliability of such a system in operation

    Production of Single Cell Protein and Astaxanthin Using Methanol as Carbon Source

    Get PDF
    Singlecell protein (SCP) is the biomass of unicellular organisms, such as bacteria or yeast, which is used commonly as a food source for animals. With a high protein content, a broad amino acid profile, and the ability to produce essential organic compounds and vitamins, SCP is a promising alternative to other classical sources of animal feed. Several processes have been developed to manufacture SCP for use in feedstocks for the sustainable farming of fish and other aquatic life, or aquaculture, which is one of the fastest growing food markets in the world. Here, a process is presented for the production of 8,800 MT of SCP per year using methanotrophic bacteria with methanol as the carbon source. To increase process profitability, the cells will be genetically engineered to produce astaxanthin, a carotenoid pigment found naturally in aquatic algae. When used as a feed supplement for farmed salmon, these SCP will serve as a nutritional additive and ensure that the salmon possess the pink pigmentation consumers expect. The final product is SCP with 0.3% by weight astaxanthin sold for 16,500/MT.Thehighmarketpriceofastaxanthinsignificantlyimprovestheprofitabilityoftheprocess.Accordingtoa10yearprofitabilityanalysis,thepredictedIRRis41.916,500/MT. The high market price of astaxanthin significantly improves the profitability of the process. According to a 10year profitability analysis, the predicted IRR is 41.9%. In 2020, the Net Present Value of the project will be 129,000,000. In the third production year, the ROI will be 56.0%

    Overview on the hydrodynamic conditions found in industrial systems and its impact in (bio)fouling formation

    Get PDF
    Supplementary data to this article can be found online at https://doi.org/10.1016/j.cej.2021.129348.Biofouling is the unwanted accumulation of deposits on surfaces, composed by organic and inorganic particles and (micro)organisms. Its occurrence in industrial equipment is responsible for several drawbacks related to operation and maintenance costs, reduction of process safety and product quality, and putative outbreaks of pathogens. The understanding on the role of operating conditions in biofouling development highlights the hydrodynamic conditions as key parameter. In general, (bio)fouling occurs in a higher extension when laminar flow conditions are used. However, the characteristics and resilience of biofouling are highly dependent on the hydrodynamic conditions under which it is developed, with turbulent conditions being associated to recalcitrant biodeposits. In industrial settings like heat exchangers, fluid distribution networks and stirred tanks, hydrodynamics play a dual function, affecting the process effectiveness while favouring biofouling formation. This review summarizes the hydrodynamics played in conventional industrial settings and provides an overview on the relevance of hydrodynamic conditions in biofouling development as well as in the effectiveness of industrial processes.This work was financially supported by: Base Funding - UIDB/00511/2020 of LEPABE and UIDB/00081/2020 of CIQUP funded by national funds through the FCT/MCTES (PIDDAC); Project Bio cide_for_Biofilm - PTDC/BII-BTI/30219/2017 - POCI-01-0145-FEDER 030219, ABFISH – PTDC/ASP-PES/28397/2017 - POCI-01-0145- FEDER-028397 and ALGAVALOR - POCI-01-0247-FEDER-035234, fun ded by FEDER funds through COMPETE2020 – Programa Operacional Competitividade e Internacionalizaçao ˜ (POCI) and by national funds (PIDDAC) through FCT/MCTES; Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit and BioTecNorte operation (NORTE-01-0145-FEDER 000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte; FCT/ SFRH/BD/147276/2019 (Susana Fernandes) and SFRH/BSAB/150379/2019 (Manuel Simoes).info:eu-repo/semantics/publishedVersio

    Petroleum refinery scheduling with consideration for uncertainty

    Get PDF
    Scheduling refinery operation promises a big cut in logistics cost, maximizes efficiency, organizes allocation of material and resources, and ensures that production meets targets set by planning team. Obtaining accurate and reliable schedules for execution in refinery plants under different scenarios has been a serious challenge. This research was undertaken with the aim to develop robust methodologies and solution procedures to address refinery scheduling problems with uncertainties in process parameters. The research goal was achieved by first developing a methodology for short-term crude oil unloading and transfer, as an extension to a scheduling model reported by Lee et al. (1996). The extended model considers real life technical issues not captured in the original model and has shown to be more reliable through case studies. Uncertainties due to disruptive events and low inventory at the end of scheduling horizon were addressed. With the extended model, crude oil scheduling problem was formulated under receding horizon control framework to address demand uncertainty. This work proposed a strategy called fixed end horizon whose efficiency in terms of performance was investigated and found out to be better in comparison with an existing approach. In the main refinery production area, a novel scheduling model was developed. A large scale refinery problem was used as a case study to test the model with scheduling horizon discretized into a number of time periods of variable length. An equivalent formulation with equal interval lengths was also presented and compared with the variable length formulation. The results obtained clearly show the advantage of using variable timing. A methodology under self-optimizing control (SOC) framework was then developed to address uncertainty in problems involving mixed integer formulation. Through case study and scenarios, the approach has proven to be efficient in dealing with uncertainty in crude oil composition

    Modelling of small capacity absorption chillers driven by solar thermal energy or waste heat

    Get PDF
    Aquesta recerca es centra en el desenvolupament de models en règim estacionari de màquines d’absorció de petita potència, els quals estan basats en dades altament fiables obtingudes en un banc d’assajos d’última tecnologia. Aquests models podran ser utilitzats en aplicacions de simulació, o bé per a desenvolupar estratègies de control de supervisió dels sistemes d’aire condicionat amb màquines d’absorció. Per tant, l’objectiu principal d’aquesta investigació és desenvolupar i descriure una metodologia comprensible i que englobi el procés sencer: tant els assajos, com la modelització, com també el desenvolupament d’una estratègia de control per a les màquines d’absorció de petita potència. Basant-se en la informació obtinguda de forma experimental en el banc d’assajos, s’han desenvolupat cinc models, cadascun amb una base teòrica diferent. Els resultats mostren que és possible obtenir models empírics summament precisos utilitzant únicament com a paràmetres d’entrada les variables dels circuits externs d’aigua. Aquest treball finalitza amb la proposta de dues estratègies òptimes de control i el seu ús per al control on-line de sistemes basats en refredadores tèrmiques d’absorció.This research deals with the development of the simple, yet accurate steady-state models of small capacity absorption machines which are based on highly reliable data obtained in the state-of-the-art test bench. These models can further be used in simulation tools or to develop supervisory control strategies for air-conditioning systems with absorption machines. Therefore, the main aim of this research is to develop and to describe a comprehensive methodology which encloses entire process which consists of testing, modelling and control strategy development of small capacity absorption machines. Five different models are developed based on the experimental data obtained in the test bench. The results show that it is possible to develop highly accurate empirical models by using only the variables of external water circuits as input parameters. Finally, two optimal control strategies are developed to demonstrate how these models can be used for on-line control of absorption systems

    A Review of Hybrid Renewable Energy Systems Based on Wind and Solar Energy: Modeling, Design and Optimization

    Get PDF
    In this chapter, an attempt is made to thoroughly review previous research work conducted on wind energy systems that are hybridized with a PV system. The chapter explores the most technical issues on wind drive hybrid systems and proposes possible solutions that can arise as a result of process integration in off-grid and grid-connected modes. A general introduction to wind energy, including how wind energy can be harvested, as well as recent progress and development of wind energy are discussed. With the special attention given to the issues related to the wind and photovoltaic (Wind-PV) systems. Throughout the chapter emphasis was made on modeling, design, and optimization and sensitivity analysis issues, and control strategies used to minimize risk as well as energy wastage. The reported reviewed results in this chapter will be a valuable researchers and practicing engineers involved in the design and development of wind energy systems

    Optimisation of flow chemistry: tools and algorithms

    Get PDF
    The coupling of flow chemistry with automated laboratory equipment has become increasingly common and used to support the efficient manufacturing of chemicals. A variety of reactors and analytical techniques have been used in such configurations for investigating and optimising the processing conditions of different reactions. However, the integrated reactors used thus far have been constrained to single phase mixing, greatly limiting the scope of reactions for such studies. This thesis presents the development and integration of a millilitre-scale CSTR, the fReactor, that is able to process multiphase flows, thus broadening the range of reactions susceptible of being investigated in this way. Following a thorough review of the literature covering the uses of flow chemistry and lab-scale reactor technology, insights on the design of a temperature-controlled version of the fReactor with an accuracy of ±0.3 ºC capable of cutting waiting times 44% when compared to the previous reactor are given. A demonstration of its use is provided for which the product of a multiphasic reaction is analysed automatically under different reaction conditions according to a sampling plan. Metamodeling and cross-validation techniques are applied to these results, where single and multi-objective optimisations are carried out over the response surface models of different metrics to illustrate different trade-offs between them. The use of such techniques allowed reducing the error incurred by the common least squares polynomial fitting by over 12%. Additionally, a demonstration of the fReactor as a tool for synchrotron X-Ray Diffraction is also carried out by means of successfully assessing the change in polymorph caused by solvent switching, this being the first synchrotron experiment using this sort of device. The remainder of the thesis focuses on applying the same metamodeling and cross-validation techniques used previously, in the optimisation of the design of a miniaturised continuous oscillatory baffled reactor. However, rather than using these techniques with physical experimentation, they are used in conjunction with computational fluid dynamics. This reactor shows a better residence time distribution than its CSTR counterparts. Notably, the effect of the introduction of baffle offsetting in a plate design of the reactor is identified as a key parameter in giving a narrow residence time distribution and good mixing. Under this configuration it is possible to reduce the RTD variance by 45% and increase the mixing efficiency by 60% when compared to the best performing opposing baffles geometry
    corecore