34 research outputs found

    Coupling nitrogen-vacancy centers in diamond to fiber-based Fabry-Pérot microcavities

    Get PDF
    This thesis investigates the coupling of the fluorescence of nitrogen-vacancy (NV) centers in diamond to tunable optical microresonators at ambient conditions, in particular in the regime of Purcell enhancement. We use fiber-based, open-access Fabry-Pérot cavities optimized for high finesse and ultra-small mode volume. Different regimes of cavity enhancement are studied that are complementary to each other: A first experiment relies on a high-finesse cavity with dielectric mirrors. The scaling laws of Purcell enhancement are explicitly demonstrated by a large-range variation of both the cavity mode volume (V = 16 − 600 µm^3 ) and the quality factor (Q = 6 · 10^3 − 2 · 10^6). We detect an enhancement of the emission spectral density by up to a factor of 300. The full potential of this resonator can be exploited with emitters having a linewidth which is narrower than the resonance linewidth of the cavity. This concept holds promise for the implementation of wavelength-tunable, narrow-band single-photon sources as well as the generation of indistinguishable single-photons at ambient conditions. However, for broad-band emitters like the NV center at room temperature, the emission lifetime is not affected noticeably in this configuration. In order to directly observe lifetime changes and Purcell-enhanced single-photon emission, we manufacture fiber-based cavities with silver-coated mirrors having ultra-small mode volumes, as small as V = 1.0 λ^3 = 0.34 µm^3. We demonstrate cavity-enhanced fluorescence imaging, which allows to locate and analyze several single NV centers with one cavity. The Purcell effect is evidenced by an enhanced fluorescence collection of up to 1.6 · 10^6 photons per second from single-NV centers and a tunable variation of the emission lifetime corresponding to an effective Purcell factor of up to 2. We furthermore investigate a benefcial regime of optical confinement where the Fabry-Pérot cavity mode is combined with additional mode confinement by the diamond nanocrystal itself, enabling sub-λ^3 mode volumes. We perform simulations that predict effective Purcell factors of up to 11 for NV centers and of up to 63 for silicon-vacancy centers, revealing a great potential for bright single-photon sources and effcient spin readout at ambient conditions.Diese Arbeit erforscht die Kopplung der Fluoreszenz von Stickstoff-Fehlstellen-Zentren (NV-Zentren) in Diamant mit durchstimmbaren optischen Mikroresonatoren bei Umgebungsbedingungen, insbesondere im Regime der Purcell Verstärkung. Hierzu benutzen wir faserbasierte, offen zugängliche Fabry-Pérot Resonatoren, die für hohe Finesse und ultrakleine Modenvolumen optimiert sind. Verschiedene, komplementäre Bereiche der Resonatorverstärkung werden untersucht. Ein erstes Experiment basiert auf einem Resonator mit hoher Finesse und dielektrischen Spiegeln. Das Skalierungsverhalten der Purcell Verstärkung wird ausführlich ausgewertet, indem man sowohl das Modenvolumen des Resonators (V = 16 − 600 µm^3 ) als auch dessen Güte (Q = 6 · 10^3 − 2 · 10^6) über einen weiten Bereich verändert. Die spektrale Leistungsdichte der Emission kann durch den Resonator um einen Faktor von bis zu 300 überhöht werden. Das gesamte Leistugsvermögen dieses Resonators kann mit schmalbandigen Emittern ausgenutzt werden, deren Emissionslinienbreite kleiner als die Linienbreite des Resonators ist. Dies ist ein vielversprechender Ansatz für die Umsetzung von schmalbandigen Einzelphotonenquellen mit durchstimmbarer Wellenlänge und für die Erzeugung ununterscheidbarer Einzelphotonen bei Umgebungsbedingungen. Jedoch bleibt die Lebenszeit der Emission für breitbandige Emitter, wie dem NV-Zentrum bei Raumtemperatur, in dieser Anordnung nahezu unbeeinflusst. Um eine Veränderung der Lebenszeit und durch den Purcell-Effekt verstärkte Einzelphotonenemission direkt zu beobachten, stellen wir Faserresonatoren mit silberbeschichteten Spiegeln und ultrakleinen Modenvolumen, bis hinab zu V = 1.0 λ^3 = 0.34 µm^3, her. Wir demonstrieren resonatorverstärkte Fluoreszenzbildgebung, die das Auffinden und Untersuchen von verschiedenen einzelnen NV-Zentren mit einem Resonator erlaubt. Der Purcell-Effekt wird über eine gesteigerte Aufsammlung der Fluoreszenz nachgewiesen, mit einer Rate von bis zu 1.6 · 10^6 Photonen pro Sekunde von einzelnen NV-Zentren und außerdem durch die abstimmbare Veränderung der Emissionslebenszeit, entsprechend einem effektiven Purcell Faktor von bis zu 2. Des Weiteren untersuchen wir ein vorteilhaftes Regime, in dem der Diamant Nanokristall selbst eine zusätzliche Einschränkung der optischen Mode bewirkt, die sich mit der Mode des Fabry-Pérot Resonators verbindet und Modenvolumen unter 1 λ^3 ermöglicht. Simulationen ergeben effektive Purcell Faktoren von bis zu 11 für NV-Zentren und von bis zu 63 für Silizium-Fehlstellen-Zentren, wodurch das große Potenzial für helle Einzelphotonenquellen und für effzientes Spin-Auslesen bei Umgebungsbedingungen aufgezeigt wird

    Coupling nitrogen-vacancy centers in diamond to fiber-based Fabry-Pérot microcavities

    Get PDF
    This thesis investigates the coupling of the fluorescence of nitrogen-vacancy (NV) centers in diamond to tunable optical microresonators at ambient conditions, in particular in the regime of Purcell enhancement. We use fiber-based, open-access Fabry-Pérot cavities optimized for high finesse and ultra-small mode volume. Different regimes of cavity enhancement are studied that are complementary to each other: A first experiment relies on a high-finesse cavity with dielectric mirrors. The scaling laws of Purcell enhancement are explicitly demonstrated by a large-range variation of both the cavity mode volume (V = 16 − 600 µm^3 ) and the quality factor (Q = 6 · 10^3 − 2 · 10^6). We detect an enhancement of the emission spectral density by up to a factor of 300. The full potential of this resonator can be exploited with emitters having a linewidth which is narrower than the resonance linewidth of the cavity. This concept holds promise for the implementation of wavelength-tunable, narrow-band single-photon sources as well as the generation of indistinguishable single-photons at ambient conditions. However, for broad-band emitters like the NV center at room temperature, the emission lifetime is not affected noticeably in this configuration. In order to directly observe lifetime changes and Purcell-enhanced single-photon emission, we manufacture fiber-based cavities with silver-coated mirrors having ultra-small mode volumes, as small as V = 1.0 λ^3 = 0.34 µm^3. We demonstrate cavity-enhanced fluorescence imaging, which allows to locate and analyze several single NV centers with one cavity. The Purcell effect is evidenced by an enhanced fluorescence collection of up to 1.6 · 10^6 photons per second from single-NV centers and a tunable variation of the emission lifetime corresponding to an effective Purcell factor of up to 2. We furthermore investigate a benefcial regime of optical confinement where the Fabry-Pérot cavity mode is combined with additional mode confinement by the diamond nanocrystal itself, enabling sub-λ^3 mode volumes. We perform simulations that predict effective Purcell factors of up to 11 for NV centers and of up to 63 for silicon-vacancy centers, revealing a great potential for bright single-photon sources and effcient spin readout at ambient conditions.Diese Arbeit erforscht die Kopplung der Fluoreszenz von Stickstoff-Fehlstellen-Zentren (NV-Zentren) in Diamant mit durchstimmbaren optischen Mikroresonatoren bei Umgebungsbedingungen, insbesondere im Regime der Purcell Verstärkung. Hierzu benutzen wir faserbasierte, offen zugängliche Fabry-Pérot Resonatoren, die für hohe Finesse und ultrakleine Modenvolumen optimiert sind. Verschiedene, komplementäre Bereiche der Resonatorverstärkung werden untersucht. Ein erstes Experiment basiert auf einem Resonator mit hoher Finesse und dielektrischen Spiegeln. Das Skalierungsverhalten der Purcell Verstärkung wird ausführlich ausgewertet, indem man sowohl das Modenvolumen des Resonators (V = 16 − 600 µm^3 ) als auch dessen Güte (Q = 6 · 10^3 − 2 · 10^6) über einen weiten Bereich verändert. Die spektrale Leistungsdichte der Emission kann durch den Resonator um einen Faktor von bis zu 300 überhöht werden. Das gesamte Leistugsvermögen dieses Resonators kann mit schmalbandigen Emittern ausgenutzt werden, deren Emissionslinienbreite kleiner als die Linienbreite des Resonators ist. Dies ist ein vielversprechender Ansatz für die Umsetzung von schmalbandigen Einzelphotonenquellen mit durchstimmbarer Wellenlänge und für die Erzeugung ununterscheidbarer Einzelphotonen bei Umgebungsbedingungen. Jedoch bleibt die Lebenszeit der Emission für breitbandige Emitter, wie dem NV-Zentrum bei Raumtemperatur, in dieser Anordnung nahezu unbeeinflusst. Um eine Veränderung der Lebenszeit und durch den Purcell-Effekt verstärkte Einzelphotonenemission direkt zu beobachten, stellen wir Faserresonatoren mit silberbeschichteten Spiegeln und ultrakleinen Modenvolumen, bis hinab zu V = 1.0 λ^3 = 0.34 µm^3, her. Wir demonstrieren resonatorverstärkte Fluoreszenzbildgebung, die das Auffinden und Untersuchen von verschiedenen einzelnen NV-Zentren mit einem Resonator erlaubt. Der Purcell-Effekt wird über eine gesteigerte Aufsammlung der Fluoreszenz nachgewiesen, mit einer Rate von bis zu 1.6 · 10^6 Photonen pro Sekunde von einzelnen NV-Zentren und außerdem durch die abstimmbare Veränderung der Emissionslebenszeit, entsprechend einem effektiven Purcell Faktor von bis zu 2. Des Weiteren untersuchen wir ein vorteilhaftes Regime, in dem der Diamant Nanokristall selbst eine zusätzliche Einschränkung der optischen Mode bewirkt, die sich mit der Mode des Fabry-Pérot Resonators verbindet und Modenvolumen unter 1 λ^3 ermöglicht. Simulationen ergeben effektive Purcell Faktoren von bis zu 11 für NV-Zentren und von bis zu 63 für Silizium-Fehlstellen-Zentren, wodurch das große Potenzial für helle Einzelphotonenquellen und für effzientes Spin-Auslesen bei Umgebungsbedingungen aufgezeigt wird

    Realistic prospect for continuous variable quantum computing in circuit-QED

    Get PDF
    This licentiate thesis is an extended introduction to the appended papers, which pertain to finding quantum states that are useful for continuous variable quantum computing. The useful states are characterized by a negative Wigner function. This is the underlying motivation for the appended papers, but why a negative Wigner function is necessary is not explained in the papers. This is elucidated in this thesis, with an accompanying discussion of which quantum mechanical properties allow quantum computers to surpass the capabilities of classical computers

    Integration and electrical manipulation of single-photon sources in 2-dimensional devices

    Get PDF
    Quantum nanophotonics aims at studying the interaction between matter and single photons at the nanoscale. Nanoscopic solid state light sources can be placed in near proximity to other photonic elements to engineer their environment and modify their behaviour by near-field effects. The use of quantum emitters guarantees on-demand single photons following a non-classical statistics, therefore allowing new types of phenomena at the nanoscale. The nanometer-sized single photon sources used in this thesis are stable, bright, narrow linewidth organic molecules. They are also scalable and reproducible, making them ideal for integration into a device as well as for tuning and sensing. In this thesis, we developed an original approach to explore near-field effects by combining ultranarrow linewidth quantum emitters with 2-dimensional materials. We present the experimental setup based on confocal microscopy at cryogenic temperatures allowing us to excite and collect emission from individual elements of the hybrid device. We first introduce a geometry of a device consisting of a capacitor where the 2-dimensional material is used as a transparent, non-invasive top electrode, deposited above a layer of polymer doped with quantum emitters. This configuration enables tuning of the single-photon emission by Stark shift over a range of 10^4 times the molecule's intrinsic linewidth. Dynamical modulation of the emission at high frequency (similar to the molecule's linewidth of approximately 100 MHz) is performed revealing interesting properties of the 2-dimensional electrode. Another geometry explored in this thesis is achieved by depositing doped nanocrystals on top a graphene field-effect transistor. We study the electrostatic behaviour of the device at different locations, observing anomalies in the Stark shift of the molecules' emission at the edge of the graphene device compared to the centre. We predict the saturation of atomic-scale defect states at the edge of graphene, as supported by our electrostatic model. A technique based on electron beam lithography of polymers for deterministic positioning 3D structures aligned on quantum emitters' location is also presented.La nanofotónica cuántica tiene como objetivo estudiar la interacción entre la materia y los fotones individuales a nanoescala. Las fuentes de luz de estado sólido nanoscópicas se pueden colocar muy cerca de otros elementos fotónicos para diseñar su entorno y modificar su comportamiento mediante efectos de campo cercano. El uso de emisores cuánticos garantiza fotones individuales bajo demanda siguiendo una estadística no clásica, permitiendo así nuevos tipos de fenómenos a nanoescala. Las fuentes de fotones individuales de tamaño nanométrico utilizadas en esta tesis son moléculas orgánicas estables, brillantes y de ancho de línea estrecho. También son escalables y reproducibles, lo que los hace ideales para la integración en un dispositivo, así como para la sintonización y la detección. En esta tesis, desarrollamos un enfoque original para explorar los efectos de campo cercano mediante la combinación de emisores cuánticos de ancho de línea ultra estrecho con materiales bidimensionales. Presentamos la configuración experimental basada en microscopía confocal a temperaturas criogénicas que nos permite excitar y recolectar emisiones de elementos individuales del dispositivo híbrido. Primero presentamos una geometría de un dispositivo que consiste en un capacitor donde el material bidimensional se usa como un electrodo superior transparente y no invasivo, depositado sobre una capa de polímero dopado con emisores cuánticos. Esta configuración permite el ajuste de la emisión de un solo fotón por el cambio de Stark en un rango de 10^4 veces el ancho de línea intrínseco de la molécula. La modulación dinámica de la emisión a alta frecuencia (similar al ancho de línea de la molécula de aproximadamente 100 MHz) se realiza revelando propiedades interesantes del electrodo bidimensional. Otra geometría explorada en esta tesis se logra depositando nanocristales dopados en la parte superior de un transistor de efecto de campo de grafeno. Estudiamos el comportamiento electrostático del dispositivo en diferentes ubicaciones, observando anomalías en el cambio Stark de la emisión de moléculas en el borde del dispositivo de grafeno en comparación con el centro. Predecimos la saturación de estados de defectos a escala atómica en el borde del grafeno, como lo apoya nuestro modelo electrostático. También se presenta una técnica basada en la litografía por haz de electrones de polímeros para el posicionamiento determinista de estructuras 3D alineadas en la ubicación de los emisores cuánticos.Postprint (published version
    corecore