6,178 research outputs found

    Resonance at 125 GeV: Higgs or Dilaton/Radion?

    Full text link
    We consider the possibility that the new particle that has been observed at 125 GeV is not the Standard Model (SM) Higgs, but instead the dilaton associated with an approximate conformal symmetry that has been spontaneously broken. We focus on dilatons that arise from theories of technicolor, or from theories of the Higgs as a pseudo-Nambu-Goldstone boson (pNGB), that involve strong conformal dynamics in the ultraviolet. In the pNGB case, we are considering a framework where the Higgs particle is significantly heavier than the dilaton and has therefore not yet been observed. In each of the technicolor and pNGB scenarios, we study both the case when the SM fermions and gauge bosons are elementary, and the case when they are composites of the strongly interacting sector. Our analysis incorporates conformal symmetry violating effects, which are necessarily present since the dilaton is not massless, and is directly applicable to a broad class of models that stabilize the weak scale and involve strong conformal dynamics. Since the AdS/CFT correspondence relates the radion in Randall-Sundrum (RS) models to the dilaton, our results also apply to RS models with the SM fields localized on the infrared brane, or in the bulk. We identify the parameters that can be used to distinguish the dilatons associated with the several different classes of theories being considered from each other, and from the SM Higgs. We perform a fit to all the available data from several experiments and highlight the key observations to extract these parameters. We find that at present, both the technicolor and pNGB dilaton scenarios provide a good fit to the data, comparable to the SM Higgs. We indicate the future observations that will help to corroborate or falsify each scenario.Comment: 41 pages, 4 figures. Analysis updated using current theoretical limits on dimensions of CFT operators. References added. Version to appear on JHE

    A Supersymmetric Theory of Flavor and R Parity

    Full text link
    We construct a renormalizable, supersymmetric theory of flavor and RR parity based on the discrete flavor group (S3)3(S_3)^3. The model can account for all the masses and mixing angles of the Standard Model, while maintaining sufficient squark degeneracy to circumvent the supersymmetric flavor problem. By starting with a simpler set of flavor symmetry breaking fields than we have suggested previously, we construct an economical Froggatt-Nielsen sector that generates the desired elements of the fermion Yukawa matrices. With the particle content above the flavor scale completely specified, we show that all renormalizable RR-parity-violating interactions involving the ordinary matter fields are forbidden by the flavor symmetry. Thus, RR parity arises as an accidental symmetry in our model. Planck-suppressed operators that violate RR parity, if present, can be rendered harmless by taking the flavor scale to be ≲8×1010\lesssim 8 \times 10^{10} GeV.Comment: 28 pp. LaTeX, 1 Postscript Figur

    Higgs-gauge unification without tadpoles

    Full text link
    In orbifold gauge theories localized tadpoles can be radiatively generated at the fixed points where U(1) subgroups are conserved. If the Standard Model Higgs fields are identified with internal components of the bulk gauge fields (Higgs-gauge unification) in the presence of these tadpoles the Higgs mass becomes sensitive to the UV cutoff and electroweak symmetry breaking is spoiled. We find the general conditions, based on symmetry arguments, for the absence/presence of localized tadpoles in models with an arbitrary number of dimensions D. We show that in the class of orbifold compactifications based on T^{D-4}/Z_N (D even, N>2) tadpoles are always allowed, while on T^{D-4}/\mathbb Z_2 (arbitrary D) with fermions in arbitrary representations of the bulk gauge group tadpoles can only appear in D=6 dimensions. We explicitly check this with one- and two-loops calculationsComment: 19 pages, 3 figures, axodraw.sty. v2: version to appear in Nucl. Phys.

    Deriving Boltzmann Equations from Kadanoff-Baym Equations in Curved Space-Time

    Full text link
    To calculate the baryon asymmetry in the baryogenesis via leptogenesis scenario one usually uses Boltzmann equations with transition amplitudes computed in vacuum. However, the hot and dense medium and, potentially, the expansion of the universe can affect the collision terms and hence the generated asymmetry. In this paper we derive the Boltzmann equation in the curved space-time from (first-principle) Kadanoff-Baym equations. As one expects from general considerations, the derived equations are covariant generalizations of the corresponding equations in Minkowski space-time. We find that, after the necessary approximations have been performed, only the left-hand side of the Boltzmann equation depends on the space-time metric. The amplitudes in the collision term on the right--hand side are independent of the metric, which justifies earlier calculations where this has been assumed implicitly. At tree level, the matrix elements coincide with those computed in vacuum. However, the loop contributions involve additional integrals over the the distribution function.Comment: 14 pages, 5 figures, extended discussion of the constraint equations and the solution for the spectral functio
    • …
    corecore