27,558 research outputs found

    Generation of feasible deployment configuration alternatives for Data Distribution Service based systems

    Get PDF
    Data distribution service (DDS) has been defined by the OMG to provide a standard data-centric publish-subscribe programming model and specification for distributed systems. DDS has been applied for the development of high performance distributed systems such as in the defense, finance, automotive, and simulation domains. To support the analysis and design of a DDS-based distributed system, the OMG has proposed the DDS UML Profile. A DDS-based system usually consists of multiple participant applications each of which has different responsibilities in the system. These participants can be allocated in different ways to the available resources, which leads to different configuration alternatives. Usually, each configuration alternative will perform differently with respect to the execution and communication cost of the overall system. In general, the deployment configuration is selected manually based on expert knowledge. This approach is suitable for small to medium scale applications but for larger applications this is not tractable. In this paper, we provide a systematic approach for deriving feasible deployment alternatives based on the application design and the available physical resources. The application design includes the design for DDS topics, publishers and subscribers. For supporting the application design, we propose a DDS UML profile. Based on the application design and the physical resources, the feasible deployment alternatives can be algorithmically derived and automatically generated using the developed tools. We illustrate the approach for deriving feasible deployment alternatives of smart city parking system

    Desert Power: The Economics of Solar Thermal Electricity for Europe, North Africa, and the Middle East

    Get PDF
    A climate crisis is inevitable unless developing countries limit carbon emissions from the power sector in the near future. This will happen only if the costs of lowcarbon power production become competitive with fossil fuel power. We focus on a leading candidate for investment: solar thermal or concentrating solar power (CSP), a commercially available technology that uses direct sunlight and mirrors to boil water and drive conventional steam turbines. Solar thermal power production in North Africa and the Middle East could provide enough power to Europe to meet the needs of 35 million people by 2020. We compute the subsidies needed to bring CSP to financial parity with fossil-fuel alternatives. We conclude that large-scale deployment of CSP is attainable with subsidy levels that are modest, given the planetary stakes. By the end of the program, unsubsidized CSP projects are likely to be competitive with coal- and gasbased power production in Europe. The question is not whether CSP is feasible but whether programs using CSP technology will be operational in time to prevent catastrophic climate change. For such programs to spur the clean energy revolution, efforts to arrange financing should begin right away, with site acquisition and construction to follow within a year.Solar energy, Africa, climate change, energy technology

    Deriving feasible deployment alternatives for parallel and distributed simulation systems

    Get PDF
    Cataloged from PDF version of article.Parallel and distributed simulations (PADS) realize the distributed execution of a simulation system over multiple physical resources. To realize the execution of PADS, different simulation infrastructures such as HLA, DIS and TENA have been defined. Recently, the Distributed Simulation Engineering and Execution Process (DSEEP) that supports the mapping of the simulations on the infrastructures has been defined. An important recommended task in DSEEP is the evaluation of the performance of the simulation systems at the design phase. In general, the performance of a simulation is largely influenced by the allocation of member applications to the resources. Usually, the deployment of the applications to the resources can be done in many different ways. DSEEP does not provide a concrete approach for evaluating the deployment alternatives. Moreover, current approaches that can be used for realizing various DSEEP activities do not yet provide adequate support for this purpose. We provide a concrete approach for deriving feasible deployment alternatives based on the simulation system and the available resources. In the approach, first the simulation components and the resources are designed. The design is used to define alternative execution configurations, and based on the design and the execution configuration; a feasible deployment alternative can be algorithmically derived. Tool support is developed for the simulation design, the execution configuration definition and the automatic generation of feasible deployment alternatives. The approach has been applied within a large-scale industrial case study for simulating Electronic Warfare systems. © 2013 ACM

    Introducing mobile edge computing capabilities through distributed 5G Cloud Enabled Small Cells

    Get PDF
    Current trends in broadband mobile networks are addressed towards the placement of different capabilities at the edge of the mobile network in a centralised way. On one hand, the split of the eNB between baseband processing units and remote radio headers makes it possible to process some of the protocols in centralised premises, likely with virtualised resources. On the other hand, mobile edge computing makes use of processing and storage capabilities close to the air interface in order to deploy optimised services with minimum delay. The confluence of both trends is a hot topic in the definition of future 5G networks. The full centralisation of both technologies in cloud data centres imposes stringent requirements to the fronthaul connections in terms of throughput and latency. Therefore, all those cells with limited network access would not be able to offer these types of services. This paper proposes a solution for these cases, based on the placement of processing and storage capabilities close to the remote units, which is especially well suited for the deployment of clusters of small cells. The proposed cloud-enabled small cells include a highly efficient microserver with a limited set of virtualised resources offered to the cluster of small cells. As a result, a light data centre is created and commonly used for deploying centralised eNB and mobile edge computing functionalities. The paper covers the proposed architecture, with special focus on the integration of both aspects, and possible scenarios of application.Peer ReviewedPostprint (author's final draft

    A Survey on Communication Networks for Electric System Automation

    Get PDF
    Published in Computer Networks 50 (2006) 877–897, an Elsevier journal. The definitive version of this publication is available from Science Direct. Digital Object Identifier:10.1016/j.comnet.2006.01.005In today’s competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial demands of electric utilities require a high-performance data communication network that supports both existing functionalities and future operational requirements. In this respect, since such a communication network constitutes the core of the electric system automation applications, the design of a cost-effective and reliable network architecture is crucial. In this paper, the opportunities and challenges of a hybrid network architecture are discussed for electric system automation. More specifically, Internet based Virtual Private Networks, power line communications, satellite communications and wireless communications (wireless sensor networks, WiMAX and wireless mesh networks) are described in detail. The motivation of this paper is to provide a better understanding of the hybrid network architecture that can provide heterogeneous electric system automation application requirements. In this regard, our aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision making process more effective and direct.This work was supported by NEETRAC under Project #04-157

    An Autonomous Engine for Services Configuration and Deployment.

    Full text link
    The runtime management of the infrastructure providing service-based systems is a complex task, up to the point where manual operation struggles to be cost effective. As the functionality is provided by a set of dynamically composed distributed services, in order to achieve a management objective multiple operations have to be applied over the distributed elements of the managed infrastructure. Moreover, the manager must cope with the highly heterogeneous characteristics and management interfaces of the runtime resources. With this in mind, this paper proposes to support the configuration and deployment of services with an automated closed control loop. The automation is enabled by the definition of a generic information model, which captures all the information relevant to the management of the services with the same abstractions, describing the runtime elements, service dependencies, and business objectives. On top of that, a technique based on satisfiability is described which automatically diagnoses the state of the managed environment and obtains the required changes for correcting it (e.g., installation, service binding, update, or configuration). The results from a set of case studies extracted from the banking domain are provided to validate the feasibility of this propos
    corecore