268 research outputs found

    Fast, Accurate and Detailed NoC Simulations

    Get PDF
    Network-on-Chip (NoC) architectures have a wide variety of parameters that can be adapted to the designer's requirements. Fast exploration of this parameter space is only possible at a high-level and several methods have been proposed. Cycle and bit accurate simulation is necessary when the actual router's RTL description needs to be evaluated and verified. However, extensive simulation of the NoC architecture with cycle and bit accuracy is prohibitively time consuming. In this paper we describe a simulation method to simulate large parallel homogeneous and heterogeneous network-on-chips on a single FPGA. The method is especially suitable for parallel systems where lengthy cycle and bit accurate simulations are required. As a case study, we use a NoC that was modelled and simulated in SystemC. We simulate the same NoC on the described FPGA simulator. This enables us to observe the NoC behavior under a large variety of traffic patterns. Compared with the SystemC simulation we achieved a speed-up of 80-300, without compromising the cycle and bit level accuracy

    An Automated Design-flow for FPGA-based Sequential Simulation

    Get PDF
    In this paper we describe the automated design flow that will transform and map a given homogeneous or heterogeneous hardware design into an FPGA that performs a cycle accurate simulation. The flow replaces the required manually performed transformation and can be embedded in existing standard synthesis flows. Compared to the earlier manually translated designs, this automated flow resulted in a reduced number of FPGA hardware resources and higher simulation frequencies. The implementation of the complete design flow is work in progress.\u

    Task mapping and mesh topology exploration for an FPGA-based network on chip

    No full text
    International audienceTask mapping strategies on NoC (Network-on-Chip) have a huge impact on the timing performance and power consumption. So does the to-pology. In this paper, we describe the exploration flow of task mapping algorithms using different NoC mesh shapes. The flow is used to evaluate timing and energy consumption based on a NoC emulation platform. It is open to any task mapping algorithms and to any shapes of NoC mesh. A heterogeneous (PC and FPGA) platform is used to fully perform each step of the flow. The experiments demonstrate that the most appropriate task mapping strategy and the most suitable NoC shape strongly depend on the algorithm used. Depending on the timing latency results obtained and the FPGA resources used, the designer can select the appropriate task mapping strategy on the suitable shape in a short exploration time and with precise timing evaluation

    Evaluation of SNMP-like protocol to manage a NoC emulation platform

    No full text
    International audience—The Networks-on-Chip(NoCs) are currently the most appropriate communication structure for many-core embedded systems. AnFPGA-based emulation platform can drastically reduce the time needed to evaluate a NoC, even if it is composed by tens or hundreds of distributed components. These components should be timely managed in order to execute an evaluation traffic scenario. There is a lack of standard protocols to drive FPGA-based NoC emulators. Such protocols could ease the integration of emulation components developed by different designers. In this paper, we evaluate a light version of SNMP (Simple Network Management Protocol) to manage an FPGA-based NoC emulation platform. The SNMP protocol and its related components are adapted to a hardware implementation. This facilitates the configuration of the emulation nodes without FPGA-resynthesis, as well as the extraction of emulation results. Some experiments highlight that this protocol is quite simple to implement and very efficient for a light resources overhead

    NoC Emulation based on Partial Reconfiguration

    Full text link
    This paper studies the possibly of using partial reconfiguration for achieving acceleration of the emulation process of Systems on Chip based on Networks on Chip (NoC). The main advantage of using partial reconfiguration is that re-synthesis of the systems is not required and thus the emulation process can be accelerated. The paper focuses on the description of a method for building partial runtime reconfigurable systems and its application for building a NoC emulation framework. The paper also includes a brief description of all the building elements of the emulation framework and a use case that demonstrates the advantages of the use of partial reconfiguration for emulation

    Prototyping Methodologies and Design of Communication-centric Heterogeneous Many-core Architectures

    Get PDF

    Heracles: A Tool for Fast RTL-Based Design Space Exploration of Multicore Processors

    Get PDF
    This paper presents Heracles, an open-source, functional, parameterized, synthesizable multicore system toolkit. Such a multi/many-core design platform is a powerful and versatile research and teaching tool for architectural exploration and hardware-software co-design. The Heracles toolkit comprises the soft hardware (HDL) modules, application compiler, and graphical user interface. It is designed with a high degree of modularity to support fast exploration of future multicore processors of di erent topologies, routing schemes, processing elements (cores), and memory system organizations. It is a component-based framework with parameterized interfaces and strong emphasis on module reusability. The compiler toolchain is used to map C or C++ based applications onto the processing units. The GUI allows the user to quickly con gure and launch a system instance for easy factorial development and evaluation. Hardware modules are implemented in synthesizable Verilog and are FPGA platform independent. The Heracles tool is freely available under the open-source MIT license at: http://projects.csail.mit.edu/heracle
    corecore