109 research outputs found

    Automatic Synthesis of Parsers and Validation of Bitstreams Within the MPEG Reconfigurable Video Coding Framework

    Get PDF
    International audienceVideo coding technology has evolved in the past years into a variety of different and complex algorithms. So far the specifications of such standard algorithms have been done case by case, providing monolithic textual and reference software specifications, but without paying any attention to the possibility of further improvements of such monolithic standards. The MPEG Reconfigurable Video Coding (RVC) framework is a new ISO/IEC standard, currently under its final stage of development aiming at providing video codec specifications at the level of coding tools instead of monolithic descriptions. The possibility to select a subset of standard video coding algorithms to specify a decoder that satisfies application specific constraints is very attractive. However, such possibility to reconfigure codecs requires systematic procedures and tools capable of describing the new bitstream syntaxes of such new codecs. Moreover, it becomes also necessary to generate the associated parsers, capable of parsing the new bitstreams. This paper further explains the problem and describes the technologies used to describe new bitstream syntaxes. Additionally, the paper describes the methodologies and the tools for the validation of bitstream syntaxes descriptions as well as a systematic procedure for automatically synthesizing parsers from the bitstream descriptions

    Automatic Synthesis of Parsers and Validation of Bitstreams Within the MPEG Reconfigurable Video Coding Framework

    Get PDF
    Video coding technology has evolved in the past years into a variety of different and complex algorithms. So far the specifications of such standard algorithms have been done case by case, providing monolithic textual and reference software specifications, but without paying any attention to the possibility of further improvements of such monolithic standards. The MPEG Reconfigurable Video Coding (RVC) framework is a new ISO/IEC standard, currently under its final stage of development aiming at providing video codec specifications at the level of coding tools instead of monolithic descriptions. The possibility to select a subset of standard video coding algorithms to specify a decoder that satisfies application specific constraints is very attractive. However, such possibility to reconfigure codecs requires systematic procedures and tools capable of describing the new bitstream syntaxes of such new codecs. Moreover, it becomes also necessary to generate the associated parsers, capable of parsing the new bitstreams. This paper further explains the problem and describes the technologies used to describe new bitstream syntaxes. Additionally, the paper describes the methodologies and the tools for the validation of bitstream syntaxes descriptions as well as a systematic procedure for automatically synthesizing parsers from the bitstream description

    MPEG Reconfigurable Video Coding

    Get PDF
    WOS - ISBN: 978-1-4419-6344-4The currentmonolithic and lengthy scheme behind the standardization and the design of new video coding standards is becoming inappropriate to satisfy the dynamism and changing needs of the video coding community. Such a scheme and specification formalism do not enable designers to exploit the clear commonalities between the different codecs, neither at the level of the specification nor at the level of the implementation. Such a problem is one of the main reasons for the typical long time interval elapsing between the time a new idea is validated until it is implemented in consumer products as part of a worldwide standard. The analysis of this problem originated a new standard initiative within the ISO/IEC MPEG committee, called Reconfigurable Video Coding (RVC). The main idea is to develop a video coding standard that overcomes many shortcomings of the current standardization and specification process by updating and progressively incrementing a modular library of components. As the name implies, flexibility and reconfigurability are new attractive features of the RVC standard. The RVC framework is based on the usage of a new actor/dataflow oriented language called CAL for the specification of the standard library and the instantiation of the RVC decoder model. CAL dataflow models expose the intrinsic concurrency of the algorithms by employing the notions of actor programming and dataflow. This chapter gives an overview of the concepts and technologies building the standard RVC framework and the non standard tools supporting the RVC model from the instantiation and simulation of the CAL model to the software and/or hardware code synthesis

    Description-driven Adaptation of Media Resources

    Get PDF
    The current multimedia landscape is characterized by a significant diversity in terms of available media formats, network technologies, and device properties. This heterogeneity has resulted in a number of new challenges, such as providing universal access to multimedia content. A solution for this diversity is the use of scalable bit streams, as well as the deployment of a complementary system that is capable of adapting scalable bit streams to the constraints imposed by a particular usage environment (e.g., the limited screen resolution of a mobile device). This dissertation investigates the use of an XML-driven (Extensible Markup Language) framework for the format-independent adaptation of scalable bit streams. Using this approach, the structure of a bit stream is first translated into an XML description. In a next step, the resulting XML description is transformed to reflect a desired adaptation of the bit stream. Finally, the transformed XML description is used to create an adapted bit stream that is suited for playback in the targeted usage environment. The main contribution of this dissertation is BFlavor, a new tool for exposing the syntax of binary media resources as an XML description. Its development was inspired by two other technologies, i.e. MPEG-21 BSDL (Bitstream Syntax Description Language) and XFlavor (Formal Language for Audio-Visual Object Representation, extended with XML features). Although created from a different point of view, both languages offer solutions for translating the syntax of a media resource into an XML representation for further processing. BFlavor (BSDL+XFlavor) harmonizes the two technologies by combining their strengths and eliminating their weaknesses. The expressive power and performance of a BFlavor-based content adaptation chain, compared to tool chains entirely based on either BSDL or XFlavor, were investigated by several experiments. One series of experiments targeted the exploitation of multi-layered temporal scalability in H.264/AVC, paying particular attention to the use of sub-sequences and hierarchical coding patterns, as well as to the use of metadata messages to communicate the bit stream structure to the adaptation logic. BFlavor was the only tool to offer an elegant and practical solution for XML-driven adaptation of H.264/AVC bit streams in the temporal domain

    An overview on the standard of digital video broadcasting – terrestrial.

    Get PDF
    Digital Video Broadcasting (DVB) es un consorcio formado por industriales de los medios de comunicación, que está integrado por radiodifusores, fabricantes, operadores de redes, desarrolladores de software y organismos reguladores. El consorcio fue creado con el fin de definir las normas técnicas para estandarizar todos los aspectos relacionados con la prestación de servicios de televisión digital. El estándar DVB ha sido adoptado en Europa, Oriente Medio, Suráfrica y Australasia. Adicionalmente, el estándar DVB fue seleccionado en Colombia y Panamá como el sistema de transmisión de televisión digital terrestre (DVB-T/T2). El estándar DVB es un conjunto de especificaciones que permiten la integración de información multimedia para proveer servicios de información, educación, negocios y entretenimiento. La implementación de DVB requiere de acuerdos entre los radiodifusores, operadores de redes y fabricantes en la definición de los parámetros de operación, además de tener en cuenta las normativas gubernamentales. Este artículo presenta un resumen de los principales elementos definidos en el estándar DVB-T/T2, basado en los documentos guía elaborados por el consorcio DVB, e incluye algunas de las acciones tomadas durante el proceso de implementación de DVB-T/T2 en Colombia

    Compressed-domain transcoding of H.264/AVC and SVC video streams

    Get PDF

    Multiple description image and video coding for P2P transmissions

    Get PDF
    Peer-to-Peer (P2P) media streaming is, nowadays, a very attractive topic due to the bandwidth available to serve demanding content scales. A key challenge, however, is making content distribution robust to peer transience. Multiple description coding (MDC) has, indeed, proven to be very effective with problems concerning the packets’ losses, since it generates several descriptions and may reconstruct the original information with any number of descriptions that may reach the decoder. Therefore multiple descriptions may be effective for robust peer-to-peer media streaming. In this dissertation, it will not only be showed that, but also that varying the redundancy level of description on the fly may lead to a better performance than the one obtained without varying this parameter. Besides that, it is shown, as well, that varying the Bitrate on the fly outperforms the redundancy on it. Furthermore, the redundancy and the Bitrate were varied simultaneously. Thus, it is shown that this variation is more efficient when the packet loss is high. The experiments reported above were done using an experimental test bed developed for this purpose at the NMCG lab of the University of Beira Interior. It was also used the REGPROT, a video encoder developed by our research team, to splitted the video into multiple descriptions, which were, later, distributed among the peers in the test bed. After the request of the client, the referred encoder decoded the descriptions as they were being received.Fundação para a Ciência e a Tecnologia (FCT

    Rate-constrained coder control and comparison of video coding standards

    Full text link

    Platforms for handling and development of audiovisual data

    Get PDF
    Estágio realizado na MOG Solutions e orientado por Vítor TeixeiraTese de mestrado integrado. Engenharia Informátca e Computação. Faculdade de Engenharia. Universidade do Porto. 200

    Error resilience and concealment techniques for high-efficiency video coding

    Get PDF
    This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the streaming stage, a prioritization algorithm, based on spatial dependencies, selects a reduced set of motion vectors to be transmitted, as side information, to reduce mismatched motion predictions at the decoder. The problem of error concealment-aware video coding is also investigated to enhance the overall error robustness. A new approach based on scalable coding and optimally error concealment selection is proposed, where the optimal error concealment modes are found by simulating transmission losses, followed by a saliency-weighted optimisation. Moreover, recovery residual information is encoded using a rate-controlled enhancement layer. Both are transmitted to the decoder to be used in case of data loss. Finally, an adaptive error resilience scheme is proposed to dynamically predict the video stream that achieves the highest decoded quality for a particular loss case. A neural network selects among the various video streams, encoded with different levels of compression efficiency and error protection, based on information from the video signal, the coded stream and the transmission network. Overall, the new robust video coding methods investigated in this thesis yield consistent quality gains in comparison with other existing methods and also the ones implemented in the HEVC reference software. Furthermore, the trade-off between coding efficiency and error robustness is also better in the proposed methods
    • …
    corecore