72,387 research outputs found

    Annular cracks in thin films of nanoparticle suspensions drying on a fiber

    Full text link
    We report an experimental study of the crack pattern formed during the drying of a colloidal suspension. A horizontal fiber, which provides a one dimensional, boundary-free substrate, is coated by a film of micronic thickness. The geometry imposes a remarkable annular crack pattern and allowing precise measurements of the crack spacing over a short range of film thickness (between 2 and 10 μ\mum) which varies linearly with the film height. We compare our experimental data with a model proposed by Kitsunezaki which suggests that the variation of the crack spacing with the film thickness depends on the ratio between a critical stress at cracking and a critical stress for slipping on the substrate. By measuring the friction force of the colloidal gels on a hydrophobic surface through a cantilever technique, we can deduce the critical crack stress for these colloidal gels simply by measuring the crack spacing of the pattern.Comment: Accepted in EP

    On the puzzling feature of the silence of precursory electromagnetic emissions

    Get PDF
    It has been suggested that fracture-induced MHz-kHz electromagnetic (EM) emissions, which emerge from a few days up to a few hours before the main seismic shock occurrence permit a real-time monitoring of the damage process during the last stages of earthquake preparation, as it happens at the laboratory scale. Despite fairly abundant evidence, EM precursors have not been adequately accepted as credible physical phenomena. These negative views are enhanced by the fact that certain 'puzzling features' are repetitively observed in candidate fracture-induced pre-seismic EM emissions. More precisely, EM silence in all frequency bands appears before the main seismic shock occurrence, as well as during the aftershock period. Actually, the view that 'acceptance of 'precursive' EM signals without convincing co-seismic signals should not be expected' seems to be reasonable. In this work we focus on this point. We examine whether the aforementioned features of EM silence are really puzzling ones or, instead, reflect well-documented characteristic features of the fracture process, in terms of: universal structural patterns of the fracture process, recent laboratory experiments, numerical and theoretical studies of fracture dynamics, critical phenomena, percolation theory, and micromechanics of granular materials. Our analysis shows that these features should not be considered puzzling.Comment: arXiv admin note: text overlap with arXiv:cond-mat/0603542 by other author

    A quadtree-polygon-based scaled boundary finite element method for image-based mesoscale fracture modelling in concrete

    Get PDF
    A quadtree-polygon scaled boundary finite element-based approach for image-based modelling of concrete fracture at the mesoscale is developed. Digital images representing the two-phase mesostructure of concrete, which comprises of coarse aggregates and mortar are either generated using a take-and-place algorithm with a user-defined aggregate volume ratio or obtained from X-ray computed tomography as an input. The digital images are automatically discretised for analysis by applying a balanced quadtree decomposition in combination with a smoothing operation. The scaled boundary finite element method is applied to model the constituents in the concrete mesostructure. A quadtree formulation within the framework of the scaled boundary finite element method is advantageous in that the displacement compatibility between the cells are automatically preserved even in the presence of hanging nodes. Moreover, the geometric flexibility of the scaled boundary finite element method facilitates the use of arbitrary sided polygons, allowing better representation of the aggregate boundaries. The computational burden is significantly reduced as there are only finite number of cell types in a balanced quadtree mesh. The cells in the mesh are connected to each other using cohesive interface elements with appropriate softening laws to model the fracture of the mesostructure. Parametric studies are carried out on concrete specimens subjected to uniaxial tension to investigate the effects of various parameters e.g. aggregate size distribution, porosity and aggregate volume ratio on the fracture of concrete at the meso-scale. Mesoscale fracture of concrete specimens obtained from X-ray computed tomography scans are carried out to demonstrate its feasibility

    Thermomechanical surface instability at the origin of surface fissure patterns on heated circular MDF samples

    Full text link
    When a flat sample of medium density fibreboard (MDF) is exposed to radiant heat in an inert atmosphere, primary crack patterns suddenly start to appear over the entire surface before pyrolysis and any charring occurs. Contrary to common belief that crack formation is due to drying and shrinkage, it was demonstrated for square samples that this results from thermomechanical instability. In the present paper, new experimental data are presented for circular samples of the same MDF material. The sample was exposed to radiant heating at 20 or 50 kW/m2, and completely different crack patterns with independent Eigenmodes were observed at the two heat fluxes. We show that the two patterns can be reproduced with a full 3-D thermomechanical surface instability model of a hot layer adhered to an elastic colder foundation in an axisymmetric domain. Analytical and numerical solutions of a simplified 2-D formulation of the same problem provide excellent qualitative agreement between observed and calculated patterns. Previous data for square samples together with the results reported in the present paper for circular samples confirm the validity of the model for qualitative predictions, and indicate that further refinements can be made to improve its quantitative predictive capability.Comment: 9 pages, 13 figures. New title and abstract, added experimental and simulation details and figures, conclusions unchanged. Matches the version published in Fire And Material

    Thermomechanical surface instability at the origin of surface fissure patterns on heated circular MDF samples

    Full text link
    When a flat sample of medium density fibreboard (MDF) is exposed to radiant heat in an inert atmosphere, primary crack patterns suddenly start to appear over the entire surface before pyrolysis and any charring occurs. Contrary to common belief that crack formation is due to drying and shrinkage, it was demonstrated for square samples that this results from thermomechanical instability. In the present paper, new experimental data are presented for circular samples of the same MDF material. The sample was exposed to radiant heating at 20 or 50 kW/m2, and completely different crack patterns with independent Eigenmodes were observed at the two heat fluxes. We show that the two patterns can be reproduced with a full 3-D thermomechanical surface instability model of a hot layer adhered to an elastic colder foundation in an axisymmetric domain. Analytical and numerical solutions of a simplified 2-D formulation of the same problem provide excellent qualitative agreement between observed and calculated patterns. Previous data for square samples together with the results reported in the present paper for circular samples confirm the validity of the model for qualitative predictions, and indicate that further refinements can be made to improve its quantitative predictive capability.Comment: 9 pages, 13 figures. New title and abstract, added experimental and simulation details and figures, conclusions unchanged. Matches the version published in Fire And Material

    Evolving fracture patterns: columnar joints, mud cracks, and polygonal terrain

    Get PDF
    When cracks form in a thin contracting layer, they sequentially break the layer into smaller and smaller pieces. A rectilinear crack pattern encodes information about the order of crack formation, as later cracks tend to intersect with earlier cracks at right angles. In a hexagonal pattern, in contrast, the angles between all cracks at a vertex are near 120∘^\circ. However, hexagonal crack patterns are typically only seen when a crack network opens and heals repeatedly, in a thin layer, or advances by many intermittent steps into a thick layer. Here it is shown how both types of pattern can arise from identical forces, and how a rectilinear crack pattern evolves towards a hexagonal one. Such an evolution is expected when cracks undergo many opening cycles, where the cracks in any cycle are guided by the positions of cracks in the previous cycle, but when they can slightly vary their position, and order of opening. The general features of this evolution are outlined, and compared to a review of the specific patterns of contraction cracks in dried mud, polygonal terrain, columnar joints, and eroding gypsum-sand cementsComment: 19 pages, 9 figures, accepted for publication in Phil. Trans. R. Soc. A; theme issue on Geophysical Pattern Formation (to appear 2013

    Pattern formation and selection in quasi-static fracture

    Full text link
    Fracture in quasi-statically driven systems is studied by means of a discrete spring-block model. Developed from close comparison with desiccation experiments, it describes crack formation induced by friction on a substrate. The model produces cellular, hierarchical patterns of cracks, characterized by a mean fragment size linear in the layer thickness, in agreement with experiments. The selection of a stationary fragment size is explained by exploiting the correlations prior to cracking. A scaling behavior associated with the thickness and substrate coupling, derived and confirmed by simulations, suggests why patterns have similar morphology despite their disparity in scales.Comment: 4 pages, RevTeX, two-column, 5 PS figures include
    • …
    corecore