15,542 research outputs found

    Battery choice and management for New Generation Electric Vehicles

    Get PDF
    Different types of electric vehicles (EVs) have been recently designed with the aim of solving pollution problems caused by the emission of gasoline-powered engines. Environmental problems promote the adoption of new-generation electric vehicles for urban transportation. As it is well known, one of the weakest points of electric vehicles is the battery system. Vehicle autonomy and, therefore, accurate detection of battery state of charge (SoC) together with battery expected life, i.e., battery state of health, are among the major drawbacks that prevent the introduction of electric vehicles in the consumer market. The electric scooter may provide the most feasible opportunity among EVs. They may be a replacement product for the primary-use vehicle, especially in Europe and Asia, provided that drive performance, safety, and cost issues are similar to actual engine scooters. The battery system choice is a crucial item, and thanks to an increasing emphasis on vehicle range and performance, the Li-ion battery could become a viable candidate. This paper deals with the design of a battery pack based on Li-ion technology for a prototype electric scooter with high performance and autonomy. The adopted battery system is composed of a suitable number of cells series connected, featuring a high voltage level. Therefore, cell equalization and monitoring need to be provided. Due to manufacturing asymmetries, charge and discharge cycles lead to cell unbalancing, reducing battery capacity and, depending on cell type, causing safety troubles or strongly limiting the storage capacity of the full pack. No solution is available on the market at a cheap price, because of the required voltage level and performance, therefore, a dedicated battery management system was designed, that also includes a battery SoC monitoring. The proposed solution features a high capability of energy storing in braking conditions, charge equalization, overvoltage and undervoltage protection and, obviously, SoC information in order to optimize autonomy instead of performance or vice-versa

    Closed Brayton Cycle power system with a high temperature pellet bed reactor heat source for NEP applications

    Get PDF
    Capitalizing on past and future development of high temperature gas reactor (HTGR) technology, a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture, comprising the reactor/power system/space radiator subsystems, is presented in conceptual form, sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore, an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems

    Research and Technology

    Get PDF
    Langley Research Center is engaged in the basic an applied research necessary for the advancement of aeronautics and space flight, generating advanced concepts for the accomplishment of related national goals, and provding research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Highlights of major accomplishments and applications are presented

    Protection and Disturbance Mitigation of Next Generation Shipboard Power Systems

    Get PDF
    Today, thanks to modern advances mainly in the power electronics field, megawatt-level electric drives and magnetic levitation are being integrated into the marine power grids. These technologies operate based on Direct Current (DC) power which require Alternating Current (AC) to DC conversion within the current grid. Medium-voltage Direct Current (MVDC) and Flywheel Energy Storage Systems (FESS) are the next state-of-the-art technologies that researchers are leaning on to produce, convert, store, and distribute power with improved power quality, reliability, and flexibility. On the other hand, with the extensive integration of high-frequency power electronic converters, system stability analysis and the true system dynamic behaviors assessment following grid disturbances have become a serious concern for system control designs and protection. This dissertation first explores emerging shipboard power distribution topologies such as MVDC networks and FESS operation with charge and discharge dynamics. Furthermore, the important topic of how these systems perform in dynamic conditions with pulsed power load, faults, arc fault and system protection are studied. Secondly, a communication-based fault detection and isolation system controller that improves upon a directional AC overcurrent relay protection system is proposed offering additional protection discrimination between faults and pulsed-power Load (PPL) in MVDC systems. The controller is designed to segregate between system dynamic short-circuit fault and bus current disturbances due to a PPL. Finally, to validate the effectiveness of the proposed protection controller, different bus current disturbances are simulated within a time-domain electromagnetic transient simulation of a shipboard power system including a PPL system operating with different ramp rate profiles, pulse widths, peak powers, and fault locations. This overarching goal of this work is to address some of the critical issues facing the US Navy as warfighter mission requirements increase exponentially and move towards advanced and sophisticated pulsed power load devices such as high energy weapon systems, high energy sensor and radar systems. The analyses and proposed solutions in this dissertation support current shipbuilding industry priorities to improve shipboard power system reliability and de-risk the integration of new power system technologies for next generation naval vessels
    • 

    corecore