1,358 research outputs found

    Guidelines for the establishment of an aviation division in the Saudi frontier forces

    Get PDF

    Cloud-Enhanced Robotic System for Smart City Crowd Control

    Get PDF
    Cloud robotics in smart cities is an emerging paradigm that enables autonomous robotic agents to communicate and collaborate with a cloud computing infrastructure. It complements the Internet of Things (IoT) by creating an expanded network where robots offload data-intensive computation to the ubiquitous cloud to ensure quality of service (QoS). However, offloading for robots is significantly complex due to their unique characteristics of mobility, skill-learning, data collection, and decision-making capabilities. In this paper, a generic cloud robotics framework is proposed to realize smart city vision while taking into consideration its various complexities. Specifically, we present an integrated framework for a crowd control system where cloud-enhanced robots are deployed to perform necessary tasks. The task offloading is formulated as a constrained optimization problem capable of handling any task flow that can be characterized by a Direct Acyclic Graph (DAG).We consider two scenarios of minimizing energy and time, respectively, and develop a genetic algorithm (GA)-based approach to identify the optimal task offloading decisions. The performance comparison with two benchmarks shows that our GA scheme achieves desired energy and time performance. We also show the adaptability of our algorithm by varying the values for bandwidth and movement. The results suggest their impact on offloading. Finally, we present a multi-task flow optimal path sequence problem that highlights how the robot can plan its task completion via movements that expend the minimum energy. This integrates path planning with offloading for robotics. To the best of our knowledge, this is the first attempt to evaluate cloud-based task offloading for a smart city crowd control system

    MODELING OF INNOVATIVE LIGHTER-THAN-AIR UAV FOR LOGISTICS, SURVEILLANCE AND RESCUE OPERATIONS

    Get PDF
    An unmanned aerial vehicle (UAV) is an aircraft that can operate without the presence of pilots, either through remote control or automated systems. The first part of the dissertation provides an overview of the various types of UAVs and their design features. The second section delves into specific experiences using UAVs as part of an automated monitoring system to identify potential problems such as pipeline leaks or equipment damage by conducting airborne surveys.Lighter-than-air UAVs, such as airships, can be used for various applications, from aerial photography, including surveying terrain, monitoring an area for security purposes and gathering information about weather patterns to surveillance. The third part reveals the applications of UAVs for assisting in search and rescue operations in disaster situations and transporting natural gas. Using PowerSim software, a model of airship behaviour was created to analyze the sprint-and-drift concept and study methods of increasing the operational time of airships while having a lower environmental impact when compared to a constantly switched-on engine. The analysis provided a reliable percentage of finding the victim during patrolling operations, although it did not account for victim behaviour. The study has also shown that airships may serve as a viable alternative to pipeline transportation for natural gas. The technology has the potential to revolutionize natural gas transportation, optimizing efficiency and reducing environmental impact. Additionally, airships have a unique advantage in accessing remote and otherwise inaccessible areas, providing significant benefits in the energy sector. The employment of this technology was studied to be effective in specific scenarios, and it will be worth continuing to study it for a positive impact on society and the environment

    Autonomous robot patrolling of a sparsely populated unknown environment

    Get PDF
    The increasing availability and affordability of autonomous robots has expanded their uses for many new applications, such as exploration, surveillance and threat containment. Most research considers a team of a large number of robots that contain global information. This work explores distributed and low overhead algorithms for patrolling and threat containment within a region sparsely populated with few robots. The robots patrol the area without the global knowledge of the region, but each is equipped with an omni-directional range finder and a positioning system for keeping track of its location and metering distance and directions of events. This study presents the extent of effectiveness and limitations of utilizing a limited number of robots patrolling an unknown wide-spread region. A set of three algorithms was developed. All algorithms assume the use of artificial potential fields (APFs) for collision avoidance with other robots and the walls as well as to approach the threat. The algorithms differ in two ways; whether or not the robots have a limited memory of past events and the way the robots maneuver from one patrol target location to another. The next patrol target location can be derived randomly or based on past events. The past events include previously sensed robot locations, target locations, and walls. The algorithms are analyzed in terms of the time it takes for the robots to detect and neutralize threats within the surveillance region. Simulations via MATLAB are conducted to investigate the tradeoffs due to factors such as the number of robots, the size of the region, and the frequency of threats. The results show that the three algorithms perform comparably on average, achieving reasonable effectiveness given the inherent limitations that are lacking in the global information about the environment

    Applications of a High-Altitude Powered Platform (HAPP)

    Get PDF
    A list of potential uses for the (HAPP) and conceptual system designs for a small subset of the most promising applications were investigated. The method was to postulate a scenario for each application specifying a user, a set of system requirements and the most likely competitor among conventional aircraft and satellite systems. As part of the study of remote sensing applications, a parametric cost comparison was done between aircraft and HAPPS. For most remote sensing applications, aircraft can supply the same data as HAPPs at substantially lower cost. The critical parameters in determining the relative costs of the two systems are the sensor field of view and the required frequency of the observations being made. The HAPP is only competitive with an airplane when sensors having a very wide field of view are appropriate and when the phenomenon being observed must be viewed at least once per day. This eliminates the majority of remote sensing applications from any further consideration

    Quadrotor: a detailed analysis on construction and operation

    Get PDF
    It is a type of an unmanned air vehicle (UAV) which by its name suggests that consists of 4 engines to drive it. Usually we use BLDC motors and propellers as the engines of a quad. Its motion and dynamics can be compared with that of a helicopter in regards to its transverse and longitudinal motion. It has various uses in various fields of military, business, rescue mission, modern warfare etc. They have a vertical take-off and landing system. Unlike a helicopter the propellers or blades of a “Quadrotor” have fixed pitch. Control of vehicle motion is achieved by altering the pitch and/or rotation rate of one or more rotor discs, thereby changing its torque load and thrust/lift characteristics. This will be explained in details in course of the following discussion. If we look into history of the “Quadrotor”, we get to know that it was the first step towards vertical take-off and landing vehicle. At first it was a manned vehicle but now mainly the research is focused upon a unmanned “Quadrotor” which is controlled with the help of electronic signals and various other mechanisms

    Civil Uses of Remotely Piloted Aircraft

    Get PDF
    The technology effort is identified and assessed that is required to bring the civil uses of RPVs to fruition and to determine whether or not the potential market is real and economically practical, the technologies are within reach, the operational problems are manageable, and the benefits are worth the cost. To do so, the economic, technical, and environmental implications are examined. The time frame is 1980-85. Representative uses are selected; detailed functional and performance requirements are derived for RPV systems; and conceptual system designs are devised. Total system cost comparisons are made with non-RPV alternatives. The potential market demand for RPV systems is estimated. Environmental and safety requirements are examined, and legal and regulatory concerns are identified. A potential demand for 2,000-11,000 RPV systems is estimated. Typical cost savings of 25-35% compared to non-RPV alternatives are determined. There appear to be no environmental problems, and the safety issue appears manageable

    Living by Algorithm: Smart Surveillance and the Society of Control

    Get PDF
    Foucault’s disciplinary society and his notion of panopticism are often invoked in discussions regarding electronic surveillance. Against this use of Foucault, I argue that contemporary trends in surveillance technology abstract human bodies from their territorial settings, separating them into a series of discrete flows through what Deleuze will term, the surveillant assemblage. The surveillant assemblage and its product, the socially sorted body, aim less at molding, punishing and controlling the body and more at triggering events of in- and ex-clusion from life opportunities. The meaning of the body as monitored by latest generation vision technologies formed from machine only surveillance has been transformed. Such a body is no longer disciplinary in the Foucauldian sense. It is a virtual/flesh interface broken into discrete data flows whose comparison and breakage generate bodies as both legible and eligible (or illegible)
    corecore