25 research outputs found

    Design of Graphene-Based Metamaterial Absorber and Antenna

    Get PDF
    Graphene is a monolayer of carbon atoms arranged in a honeycomb structure which exhibits remarkable properties including high electron mobility, mechanical flexibility, and saturable absorption. In this chapter, the conductivity model of the graphene is first reviewed. Based on the conductivity model of graphene, the equivalent circuit model of graphene is discussed. By varying graphene’s chemical potential via external biasing voltage, graphene conductivity can be flexibly tuned in the terahertz and infrared frequencies. With the tunable characteristic, graphene-based metamaterial absorber and reflectarray have been designed. Good performance in these examples illustrates that graphene promises sufficient flexibility in the design of metamaterial devices

    Terahertz Reconfigurable Metasurface for Dynamic Non-Diffractive Orbital Angular Momentum Beams using Vanadium Dioxide

    Get PDF
    Funding: This work was supported in part by the Natural Science Foundation of Beijing under Grant 4202047, in part by the Beijing Nova Program under Grant 181100006218039, and in part by the 111 Project (B17007). 10.13039/501100004826-Natural Science Foundation of Beijing Municipality (Grant Number: 4202047) 10.13039/501100005090-Beijing Nova Program (Grant Number: Z181100006218039) 10.13039/501100013314-Higher Education Discipline Innovation Project (Grant Number: B17007)Peer reviewedPublisher PD

    Terahertz Reconfigurable Metasurface for Dynamic Non-Diffractive Orbital Angular Momentum Beams using Vanadium Dioxide

    Full text link
    © 2009-2012 IEEE. Orbital angular momentum (OAM) generation based on metasurfaces has attracted tremendous interest due to its potential in capacity enhancement of high-speed wireless communication systems. Reconfigurability is one of the key desired characteristics for the design of future metasurfaces. In this paper, a metasurface taking advantage of vanadium dioxide (VO2) is proposed. The proposed design can generate a non-diffractive OAM beam and achieve the multiple reconfigurability of the topological charge, beam radius, beam deflection angle. The operation frequency can be adjusted by controlling the state of VO2 at terahertz (THz) region. Simulation results demonstrate that the designed metasurface can generate a non-diffractive OAM beam with tunable topological charge and beam radius, propagating along ±x or ±y directions with the controllable deflection angle between 6.74° and 44.77°, ranging from 0.69 THz to 0.79 THz

    Gradient metasurfaces: a review of fundamentals and applications

    Full text link
    In the wake of intense research on metamaterials the two-dimensional analogue, known as metasurfaces, has attracted progressively increasing attention in recent years due to the ease of fabrication and smaller insertion losses, while enabling an unprecedented control over spatial distributions of transmitted and reflected optical fields. Metasurfaces represent optically thin planar arrays of resonant subwavelength elements that can be arranged in a strictly or quasi periodic fashion, or even in an aperiodic manner, depending on targeted optical wavefronts to be molded with their help. This paper reviews a broad subclass of metasurfaces, viz. gradient metasurfaces, which are devised to exhibit spatially varying optical responses resulting in spatially varying amplitudes, phases and polarizations of scattered fields. Starting with introducing the concept of gradient metasurfaces, we present classification of different metasurfaces from the viewpoint of their responses, differentiating electrical-dipole, geometric, reflective and Huygens' metasurfaces. The fundamental building blocks essential for the realization of metasurfaces are then discussed in order to elucidate the underlying physics of various physical realizations of both plasmonic and purely dielectric metasurfaces. We then overview the main applications of gradient metasurfaces, including waveplates, flat lenses, spiral phase plates, broadband absorbers, color printing, holograms, polarimeters and surface wave couplers. The review is terminated with a short section on recently developed nonlinear metasurfaces, followed by the outlook presenting our view on possible future developments and perspectives for future applications.Comment: Accepted for publication in Reports on Progress in Physic

    Generation and Focusing of Orbital Angular Momentum Based on Polarized Reflectarray at Microwave Frequency

    Get PDF
    A novel polarized reflectarray is designed, fabricated, and experimentally characterized to show its flexibility and efficiency to control wave generation and focusing of orbital angular momentum (OAM) vortices with desirable OAM modes in the microwave frequency regime. In order to rigorously study the generation and focusing of OAM, a versatile analytical theory is proposed to theoretically study the compensation phase of reflectarray. Two prototypes of microwave reflectarrays are fabricated and experimentally characterized at 12 GHz: one for generation and one for focusing of OAM-carrying beams. Compared with the OAM-generating reflectarray, the reflectarray for focusing OAM vortex can significantly reduce the beam diameter, and this can further improve the transmission efficiency of the OAM vortex beams. We also show that the numerical and experimental results agree very well. The proposed design method and reflectarrays may spur the development of new efficient approaches to generate and focus OAM vortex waves for applications to microwave wireless communications

    A review of dielectric optical metasurfaces for wavefront control

    Get PDF
    During the past few years, metasurfaces have been used to demonstrate optical elements and systems with capabilities that surpass those of conventional diffractive optics. Here, we review some of these recent developments, with a focus on dielectric structures for shaping optical wavefronts. We discuss the mechanisms for achieving steep phase gradients with high efficiency, simultaneous polarization and phase control, controlling the chromatic dispersion, and controlling the angular response. Then, we review applications in imaging, conformal optics, tunable devices, and optical systems. We conclude with an outlook on future potentials and challenges that need to be overcome

    Design, Concepts and Applications of Electromagnetic Metasurfaces

    Get PDF
    The paper overviews our recent work on the synthesis of metasurfaces and related concepts and applications. The synthesis is based on generalized sheet transition conditions (GSTCs) with a bianisotropic surface susceptibility tensor model of the metasurface structure. We first place metasurfaces in a proper historical context and describe the GSTC technique with some fundamental susceptibility tensor considerations. Upon this basis, we next provide an in-depth development of our susceptibility-GSTC synthesis technique. Finally, we present five recent metasurface concepts and applications, which cover the topics of birefringent transformations, bianisotropic refraction, light emission enhancement, remote spatial processing and nonlinear second-harmonic generation
    corecore