12,517 research outputs found

    Exploiting visual salience for the generation of referring expressions

    Get PDF
    In this paper we present a novel approach to generating referring expressions (GRE) that is tailored to a model of the visual context the user is attending to. The approach integrates a new computational model of visual salience in simulated 3-D environments with Dale and Reiter’s (1995) Incremental Algorithm. The advantage of our GRE framework are: (1) the context set used by the GRE algorithm is dynamically computed by the visual saliency algorithm as a user navigates through a simulation; (2) the integration of visual salience into the generation process means that in some instances underspecified but sufficiently detailed descriptions of the target object are generated that are shorter than those generated by GRE algorithms which focus purely on adjectival and type attributes; (3) the integration of visual saliency into the generation process means that our GRE algorithm will in some instances succeed in generating a description of the target object in situations where GRE algorithms which focus purely on adjectival and type attributes fail

    Generating collective spatial references

    Get PDF
    Generation of Referring Expressions is concerned with distinguishing descriptions for target referents in a knowledge base. Plural reference introduces novel problems, one of which is the collective/distributive distinction. This paper presents an empirical study of the production of collective spatial references, and an algorithm that determines content for such expressions from spatial data.peer-reviewe

    On visually-grounded reference production:testing the effects of perceptual grouping and 2D/3D presentation mode

    Get PDF
    When referring to a target object in a visual scene, speakers are assumed to consider certain distractor objects to be more relevant than others. The current research predicts that the way in which speakers come to a set of relevant distractors depends on how they perceive the distance between the objects in the scene. It reports on the results of two language production experiments, in which participants referred to target objects in photo-realistic visual scenes. Experiment 1 manipulated three factors that were expected to affect perceived distractor distance: two manipulations of perceptual grouping (region of space and type similarity), and one of presentation mode (2D vs. 3D). In line with most previous research on visually-grounded reference production, an offline measure of visual attention was taken here: the occurrence of overspecification with color. The results showed effects of region of space and type similarity on overspecification, suggesting that distractors that are perceived as being in the same group as the target are more often considered relevant distractors than distractors in a different group. Experiment 2 verified this suggestion with a direct measure of visual attention, eye tracking, and added a third manipulation of grouping: color similarity. For region of space in particular, the eye movements data indeed showed patterns in the expected direction: distractors within the same region as the target were fixated more often, and longer, than distractors in a different region. Color similarity was found to affect overspecification with color, but not gaze duration or the number of distractor fixations. Also the expected effects of presentation mode (2D vs. 3D) were not convincingly borne out by the data. Taken together, these results provide direct evidence for the close link between scene perception and language production, and indicate that perceptual grouping principles can guide speakers in determining the distractor set during reference production

    Structuring knowledge for reference generation : a clustering algorithm

    Get PDF
    This paper discusses two problems that arise in the Generation of Referring Expressions: (a) numeric-valued attributes, such as size or location; (b) perspective-taking in reference. Both problems, it is argued, can be resolved if some structure is imposed on the available knowledge prior to content determination. We describe a clustering algorithm which is sufficiently general to be applied to these diverse problems, discuss its application, and evaluate its performance.peer-reviewe

    Contrast perception as a visual heuristic in the formulation of referential expressions

    Get PDF
    We hypothesize that contrast perception works as a visual heuristic, such that when speakers perceive a significant degree of contrast in a visual context, they tend to produce the corresponding adjective to describe a referent. The contrast perception heuristic supports efficient audience design, allowing speakers to produce referential expressions with minimum expenditure of cognitive resources, while facilitating the listener's visual search for the referent. We tested the perceptual contrast hypothesis in three language-production experiments. Experiment 1 revealed that speakers overspecify color adjectives in polychrome displays, whereas in monochrome displays they overspecified other properties that were contrastive. Further support for the contrast perception hypothesis comes from a re-analysis of previous work, which confirmed that color contrast elicits color overspecification when detected in a given display, but not when detected across monochrome trials. Experiment 2 revealed that even atypical colors (which are often overspecified) are only mentioned if there is color contrast. In Experiment 3, participants named a target color faster in monochrome than in polychrome displays, suggesting that the effect of color contrast is not analogous to ease of production. We conclude that the tendency to overspecify color in polychrome displays is not a bottom-up effect driven by the visual salience of color as a property, but possibly a learned communicative strategy. We discuss the implications of our account for pragmatic theories of referential communication and models of audience design, challenging the view that overspecification is a form of egocentric behavior

    A perceptually based computational framework for the interpretation of spatial language

    Get PDF
    The goal of this work is to develop a semantic framework to underpin the development of natural language (NL) interfaces for 3 Dimensional (3-D) simulated environments. The thesis of this work is that the computational interpretation of language in such environments should be based on a framework that integrates a model of visual perception with a model of discourse. When interacting with a 3-D environment, users have two main goals the first is to move around in the simulated environment and the second is to manipulate objects in the environment. In order to interact with an object through language, users need to be able to refer to the object. There are many different types of referring expressions including definite descriptions, pronominals, demonstratives, one-anaphora, other-expressions, and locative-expressions Some of these expressions are anaphoric (e g , pronominals, oneanaphora, other-expressions). In order to computationally interpret these, it is necessary to develop, and implement, a discourse model. Interpreting locative expressions requires a semantic model for prepositions and a mechanism for selecting the user’s intended frame of reference. Finally, many of these expressions presuppose a visual context. In order to interpret them this context must be modelled and utilised. This thesis develops a perceptually grounded discourse-based computational model of reference resolution capable of handling anaphoric and locative expressions. There are three novel contributions in this framework a visual saliency algorithm, a semantic model for locative expressions containing projective prepositions, and a discourse model. The visual saliency algorithm grades the prominence of the objects in the user's view volume at each frame. This algorithm is based on the assumption that objects which are larger and more central to the user's view are more prominent than objects which are smaller or on the periphery of their view. The resulting saliency ratings for each frame are stored in a data structure linked to the NL system’s context model. This approach gives the system a visual memory that may be drawn upon in order to resolve references. The semantic model for locative expressions defines a computational algorithm for interpreting locatives that contain a projective preposition. Specifically, the prepositions in front of behind, to the right of, and to the left of. There are several novel components within this model. First, there is a procedure for handling the issue of frame of reference selection. Second, there is an algorithm for modelling the spatial templates of projective prepositions. This algonthm integrates a topological model with visual perceptual cues. This approach allows us to correctly define the regions described by projective preposition in the viewer-centred frame of reference, in situations that previous models (Yamada 1993, Gapp 1994a, Olivier et al 1994, Fuhr et al 1998) have found problematic. Thirdly, the abstraction used to represent the candidate trajectors of a locative expression ensures that each candidate is ascribed the highest rating possible. This approach guarantees that the candidate trajector that occupies the location with the highest applicability in the prepositions spatial template is selected as the locative’s referent. The context model extends the work of Salmon-Alt and Romary (2001) by integrating the perceptual information created by the visual saliency algonthm with a model of discourse. Moreover, the context model defines an interpretation process that provides an explicit account of how the visual and linguistic information sources are utilised when attributing a referent to a nominal expression. It is important to note that the context model provides the set of candidate referents and candidate trajectors for the locative expression interpretation algorithm. These are restncted to those objects that the user has seen. The thesis shows that visual salience provides a qualitative control in NL interpretation for 3-D simulated environments and captures interesting and significant effects such as graded judgments. Moreover, it provides an account for how object occlusion impacts on the semantics of projective prepositions that are canonically aligned with the front-back axis in the viewer-centred frame of reference
    corecore