2,654 research outputs found

    Building realistic potential patient queries for medical information retrieval evaluation

    Get PDF
    To evaluate and improve medical information retrieval, benchmarking data sets need to be created. Few benchmarks have been focusing on patients’ information needs. There is a need for additional benchmarks to enable research into effective retrieval methods. In this paper we describe the manual creation of patient queries and investigate their automatic generation. This work is conducted in the framework of a medical evaluation campaign, which aims to evaluate and improve technologies to help patients and laypeople access eHealth data. To this end, the campaign is composed of different tasks, including a medical information retrieval (IR) task. Within this IR task, a web crawl of medically related documents, as well as patient queries are provided to participants. The queries are built to represent the potential information needs patients may have while reading their medical report. We start by describing typical types of patients’ information needs. We then describe how these queries have been manually generated from medical reports for the first two years of the eHealth campaign. We then explore techniques that would enable us to automate the query generation process. This process is particularly challenging, as it requires an understanding of the patients’ information needs, and of the electronic health records. We describe various approaches to automatically generate potential patient queries from medical reports and describe our future development and evaluation phase

    Query refinement for patent prior art search

    Get PDF
    A patent is a contract between the inventor and the state, granting a limited time period to the inventor to exploit his invention. In exchange, the inventor must put a detailed description of his invention in the public domain. Patents can encourage innovation and economic growth but at the time of economic crisis patents can hamper such growth. The long duration of the application process is a big obstacle that needs to be addressed to maximize the benefit of patents on innovation and economy. This time can be significantly improved by changing the way we search the patent and non-patent literature.Despite the recent advancement of general information retrieval and the revolution of Web Search engines, there is still a huge gap between the emerging technologies from the research labs and adapted by major Internet search engines, and the systems which are in use by the patent search communities.In this thesis we investigate the problem of patent prior art search in patent retrieval with the goal of finding documents which describe the idea of a query patent. A query patent is a full patent application composed of hundreds of terms which does not represent a single focused information need. Other relevance evidences (e.g. classification tags, and bibliographical data) provide additional details about the underlying information need of the query patent. The first goal of this thesis is to estimate a uni-gram query model from the textual fields of a query patent. We then improve the initial query representation using noun phrases extracted from the query patent. We show that expansion in a query-dependent manner is useful.The second contribution of this thesis is to address the term mismatch problem from a query formulation point of view by integrating multiple relevance evidences associated with the query patent. To do this, we enhance the initial representation of the query with the term distribution of the community of inventors related to the topic of the query patent. We then build a lexicon using classification tags and show that query expansion using this lexicon and considering proximity information (between query and expansion terms) can improve the retrieval performance. We perform an empirical evaluation of our proposed models on two patent datasets. The experimental results show that our proposed models can achieve significantly better results than the baseline and other enhanced models

    The Infinite Index: Information Retrieval on Generative Text-To-Image Models

    Full text link
    Conditional generative models such as DALL-E and Stable Diffusion generate images based on a user-defined text, the prompt. Finding and refining prompts that produce a desired image has become the art of prompt engineering. Generative models do not provide a built-in retrieval model for a user's information need expressed through prompts. In light of an extensive literature review, we reframe prompt engineering for generative models as interactive text-based retrieval on a novel kind of "infinite index". We apply these insights for the first time in a case study on image generation for game design with an expert. Finally, we envision how active learning may help to guide the retrieval of generated images.Comment: Final version for CHIIR 202

    Generating indicative-informative summaries with SumUM

    Get PDF
    We present and evaluate SumUM, a text summarization system that takes a raw technical text as input and produces an indicative informative summary. The indicative part of the summary identifies the topics of the document, and the informative part elaborates on some of these topics according to the reader's interest. SumUM motivates the topics, describes entities, and defines concepts. It is a first step for exploring the issue of dynamic summarization. This is accomplished through a process of shallow syntactic and semantic analysis, concept identification, and text regeneration. Our method was developed through the study of a corpus of abstracts written by professional abstractors. Relying on human judgment, we have evaluated indicativeness, informativeness, and text acceptability of the automatic summaries. The results thus far indicate good performance when compared with other summarization technologies

    Entropy and Graph Based Modelling of Document Coherence using Discourse Entities: An Application

    Full text link
    We present two novel models of document coherence and their application to information retrieval (IR). Both models approximate document coherence using discourse entities, e.g. the subject or object of a sentence. Our first model views text as a Markov process generating sequences of discourse entities (entity n-grams); we use the entropy of these entity n-grams to approximate the rate at which new information appears in text, reasoning that as more new words appear, the topic increasingly drifts and text coherence decreases. Our second model extends the work of Guinaudeau & Strube [28] that represents text as a graph of discourse entities, linked by different relations, such as their distance or adjacency in text. We use several graph topology metrics to approximate different aspects of the discourse flow that can indicate coherence, such as the average clustering or betweenness of discourse entities in text. Experiments with several instantiations of these models show that: (i) our models perform on a par with two other well-known models of text coherence even without any parameter tuning, and (ii) reranking retrieval results according to their coherence scores gives notable performance gains, confirming a relation between document coherence and relevance. This work contributes two novel models of document coherence, the application of which to IR complements recent work in the integration of document cohesiveness or comprehensibility to ranking [5, 56]

    Web Query Reformulation via Joint Modeling of Latent Topic Dependency and Term Context

    Get PDF
    An important way to improve users’ satisfaction in Web search is to assist them by issuing more effective queries. One such approach is query reformulation, which generates new queries according to the current query issued by users. A common procedure for conducting reformulation is to generate some candidate queries first, then a scoring method is employed to assess these candidates. Currently, most of the existing methods are context based. They rely heavily on the context relation of terms in the history queries and cannot detect and maintain the semantic consistency of queries. In this article, we propose a graphical model to score queries. The proposed model exploits a latent topic space, which is automatically derived from the query log, to detect semantic dependency of terms in a query and dependency among topics. Meanwhile, the graphical model also captures the term context in the history query by skip-bigram and n-gram language models. In addition, our model can be easily extended to consider users’ history search interests when we conduct query reformulation for different users. In the task of candidate query generation, we investigate a social tagging data resource—Delicious bookmark—to generate addition and substitution patterns that are employed as supplements to the patterns generated from query log data
    • 

    corecore