197 research outputs found

    An Industrial Robot-Based Rehabilitation System for Bilateral Exercises

    Get PDF
    Robot-assisted rehabilitation devices can provide intensive and precise task-based training that differs from clinician-facilitated manual therapy. However, industrial robots are still rarely used in rehabilitation, especially in bilateral exercises. The main purpose of this research is to develop and evaluate the functionality of a bilateral upper-limb rehabilitation system based on two modern industrial robots. A `patient-cooperative' control strategy is developed based on an adaptive admittance controller, which can take into account patients' voluntary efforts. Three bilateral training protocols (passive, active, and self) are also proposed based on the system and the control strategy. Experimental results from 10 healthy subjects show that the proposed system can provide reliable bilateral exercises: the mean RMS values for the master error and the master-slave error are all less than 1.00 mm and 1.15 mm respectively, and the mean max absolute values for the master error and the master-slave error are no greater than 6.11 mm and 6.73 mm respectively. Meanwhile, the experimental results also confirm that the recalculated desired trajectory can present the voluntary efforts of subjects. These experimental findings suggest that industrial robots can be used in bilateral rehabilitation training, and also highlight the potential applications of the proposed system in further clinical practices

    Design, implementation, control, and user evaluations of assiston-arm self-aligning upper-extremity exoskeleton

    Get PDF
    Physical rehabilitation therapy is indispensable for treating neurological disabilities. The use of robotic devices for rehabilitation holds high promise, since these devices can bear the physical burden of rehabilitation exercises during intense therapy sessions, while therapists are employed as decision makers. Robot-assisted rehabilitation devices are advantageous as they can be applied to patients with all levels of impairment, allow for easy tuning of the duration and intensity of therapies and enable customized, interactive treatment protocols. Moreover, since robotic devices are particularly good at repetitive tasks, rehabilitation robots can decrease the physical burden on therapists and enable a single therapist to supervise multiple patients simultaneously; hence, help to lower cost of therapies. While the intensity and quality of manually delivered therapies depend on the skill and fatigue level of therapists, high-intensity robotic therapies can always be delivered with high accuracy. Thanks to their integrated sensors, robotic devices can gather measurements throughout therapies, enable quantitative tracking of patient progress and development of evidence-based personalized rehabilitation programs. In this dissertation, we present the design, control, characterization and user evaluations of AssistOn-Arm, a powered, self-aligning exoskeleton for robotassisted upper-extremity rehabilitation. AssistOn-Arm is designed as a passive back-driveable impedance-type robot such that patients/therapists can move the device transparently, without much interference of the device dynamics on natural movements. Thanks to its novel kinematics and mechanically transparent design, AssistOn-Arm can passively self-align its joint axes to provide an ideal match between human joint axes and the exoskeleton axes, guaranteeing ergonomic movements and comfort throughout physical therapies. The self-aligning property of AssistOn-Arm not only increases the usable range of motion for robot-assisted upper-extremity exercises to cover almost the whole human arm workspace, but also enables the delivery of glenohumeral mobilization (scapular elevation/depression and protraction/retraction) and scapular stabilization exercises, extending the type of therapies that can be administered using upper-extremity exoskeletons. Furthermore, the self-alignment property of AssistOn-Arm signi cantly shortens the setup time required to attach a patient to the exoskeleton. As an impedance-type device with high passive back-driveability, AssistOn- Arm can be force controlled without the need of force sensors; hence, high delity interaction control performance can be achieved with open-loop impedance control. This control architecture not only simpli es implementation, but also enhances safety (coupled stability robustness), since open-loop force control does not su er from the fundamental bandwidth and stability limitations of force-feedback. Experimental characterizations and user studies with healthy volunteers con- rm the transparency, range of motion, and control performance of AssistOn- Ar

    Identification of Motion Controllers In Human Standing And Walking

    Get PDF
    The method of trajectory optimization with direct collocation has the potential to extract generalized and realistic motion controllers from long duration movement data without requiring extensive measurement equipment. Knowing motion controllers not only can improve clinic assessments on locomotor disabilities, but also can inspire the control of powered exoskeletons and prostheses for better performance. Three aims were included in this dissertation. Aim 1 was to apply and validate the trajectory optimization for identification of the postural controllers in standing balance. The trajectory optimization approach was first validated on the simulated standing balance data and demonstrated that it can extract the correct postural control parameters. Then, six types of postural feedback controllers, from simple linear to complex nonlinear, were identified on six young adults’ motion data that was collected in a standing balance experiment. Results indicated that nonlinear controllers with multiple time delay paths can best explain their balance motions. A stochastic trajectory optimization approach was proposed that can help finding practically stable controllers in the identification process. Aim 2 focused on the foot placement control in walking. Foot placement controllers were successfully identified through the trajectory optimization method on nine young adults’ perturbed walking motions. It was shown that a linear controller with pelvis position and velocity feedback, suggested by the linear inverted pendulum model, was not sufficient to explain their foot placement among multiple walking speeds. Nonlinear controllers or more feedback signals, such as pelvis acceleration, are needed. Foot placement control was applied on a powered leg exoskeleton to control its legs’ swing motion. Two healthy participants were able to achieve stable walking with the controlled exoskeleton. v Results suggested that the foot placement controller helped decelerate the swing motion at late swing. In Aim 3, the trajectory optimization method was used to identify joint impedance properties in walking. Results of the synthetic study showed that relatively close impedance parameters can be identified. Then, a preliminary study was done to identify the ankle joint impedance properties of two participants at two walking speeds. The identified impedance properties were close to previous studies and consistent between different participants and walking speeds

    Development of a hybrid assist-as-need hand exoskeleton for stroke rehabilitation.

    Get PDF
    Stroke is one of the leading causes of disability globally and can significantly impair a patient’s ability to function on a daily basis. Through physical rehabilitative measures a patient may regain a level of functional independence. However, required therapy dosages are often not met. Rehabilitation is typically implemented through manual one-to-one assistance with a physiotherapist, which quickly becomes labour intensive and costly. Hybrid application of functional electrical stimulation (FES) and robotic support can access the physiological benefits of direct muscle activation while providing controlled and repeatable motion assistance. Furthermore, patient engagement can be heightened through the integration of a volitional intent measure, such as electromyography (EMG). Current hybrid hand-exoskeletons have demonstrated that a balanced hybrid support profile can alleviate FES intensity and motor torque requirements, whilst improving reference tracking errors. However, these support profiles remain fixed and patient fatigue is not addressed. The aim of this thesis was to develop a proof-of-concept assist-as-need hybrid exoskeleton for post-stroke hand rehabilitation, with fatigue monitoring to guide the balance of support modalities. The device required the development and integration of a constant current (CC) stimulator, stimulus-resistant EMG device, and hand-exoskeleton. The hand exoskeleton in this work was formed from a parametric Watt I linkage model that adapts to different finger sizes. Each linkage was optimised with respect to angular precision and compactness using Differential Evolution (DE). The exoskeleton’s output trajectory was shown to be sensitive to parameter variation, potentially caused by finger measurement error and shifts in coupler placement. However, in a set of cylindrical grasping trials it was observed that a range of movement strategies could be employed towards a successful grasp. As there are many possible trajectories that result in a successful grasp, it was deduced that the exoskeleton can still provide functional assistance despite its sensitivity to parameter variation. The CC stimulator developed in this work has a part cost of USD 145andallowsflexibleadjustmentofwaveformparametersthroughanonboardmicrocontroller.Thedeviceisdesignedtooutputcurrentupto±30mAgivenavoltagecomplianceof±50V.Whenappliedacrossa2kload,thedeviceexhibitedalinearoutputtransferfunction,withamaximumramptrackingerrorof5ThestimulusresistantEMGdevicebuildsoncurrentdesignsbyusinganovelSchmitttriggerbasedartefactdetectionchanneltoadaptivelyblankstimulationartefactswithoutstimulatorsynchronisation.ThedesignhasapartcostofUSD145 and allows flexible adjustment of waveform parameters through an on-board micro-controller. The device is designed to output current up to ±30mA given a voltage compliance of ±50V. When applied across a 2kΩ load, the device exhibited a linear output transfer function, with a maximum ramp tracking error of 5%. The stimulus-resistant EMG device builds on current designs by using a novel Schmitt trigger based artefact detection channel to adaptively blank stimulation artefacts without stimulator synchronisation. The design has a part cost of USD 150 and has been made open-source. The device demonstrated its ability to record EMG over its predominant energy spectrum during stimulation, through the stimulation electrodes or through separate electrodes. Pearson’s correlation coefficients greater than 0.84 were identified be- tween the normalised spectra of volitional EMG (vEMG) estimates during stimulation and of stimulation-free EMG recordings. This spectral similarity permits future research into applications such as spectral-based monitoring of fatigue and muscle coherence, posing an advantage over current same-electrode stimulation and recording systems, which can- not sample the lower end of the EMG spectrum due to elevated high-pass filter cut-off frequencies. The stimulus-resistant EMG device was used to investigate elicited EMG (eEMG)-based fatigue metrics during vEMG-controlled stimulation and hybrid support profiles. During intermittent vEMG-controlled stimulation, the eEMG peak-to-peak amplitude (PTP) index was the median frequency (MDF) had a negative correlation for all subjects with R > 0:62 during stimulation-induced wrist flexion and R > 0:55 during stimulation-induced finger flexion. During hybrid FES-robotic support trials, a 40% reduction in stimulus intensity resulted in an average 21% reduction in MDF gradient magnitudes. This reflects lower levels of fatigue during the hybrid support profile and indicates that the MDF gradient can provide useful information on the progression of muscle fatigue. A hybrid exoskeleton system was formed through the integration of the CC stimulator, stimulus-resistant EMG device, and the hand exoskeleton developed in this work. The system provided assist-as-need functional grasp assistance through stimulation and robotic components, governed by the user’s vEMG. The hybrid support profile demonstrated consistent motion assistance with lowered stimulation intensities, which in-turn lowered the subjects’ perceived levels of fatigue

    Impact of Ear Occlusion on In-Ear Sounds Generated by Intra-oral Behaviors

    Get PDF
    We conducted a case study with one volunteer and a recording setup to detect sounds induced by the actions: jaw clenching, tooth grinding, reading, eating, and drinking. The setup consisted of two in-ear microphones, where the left ear was semi-occluded with a commercially available earpiece and the right ear was occluded with a mouldable silicon ear piece. Investigations in the time and frequency domains demonstrated that for behaviors such as eating, tooth grinding, and reading, sounds could be recorded with both sensors. For jaw clenching, however, occluding the ear with a mouldable piece was necessary to enable its detection. This can be attributed to the fact that the mouldable ear piece sealed the ear canal and isolated it from the environment, resulting in a detectable change in pressure. In conclusion, our work suggests that detecting behaviors such as eating, grinding, reading with a semi-occluded ear is possible, whereas, behaviors such as clenching require the complete occlusion of the ear if the activity should be easily detectable. Nevertheless, the latter approach may limit real-world applicability because it hinders the hearing capabilities.</p

    Evaluation Of Impedance Control On A Powered Hip Exoskeleton

    Get PDF
    This thesis presents an impedance control strategy for a novel powered hip exoskeleton designed to provide partial assistance and leverage the dynamics of human gait. The control strategy is based on impedance control and provides the user assistance as needed which is determined by the user’s interaction with the exoskeleton. A series elastic element is used to drive the exoskeleton and measures the interaction torque between the user and the device. The device operates in two modes. Free mode is a low impedance state that attempts to provide no assistance. Assist mode increases the gains of the controller to provide assistance as needed. The device was tested on five healthy subjects, and the resulting assistive hip torque was evaluated to determine the ability of the controller to provide gait assistance. The device was evaluated at different speeds to assess the gait speed adaptation performance of the controller. Results show that hip torque assistance range was between 0.3 to 0.5 Nm/kg across the subjects, corresponding to 24% to 40% of the maximum hip torque requirements of healthy adults during walking. The peak power provided by the system is 35 W on average and a peak power of up to 45 W
    corecore