369,302 research outputs found

    Issues in Process Variants Mining

    Get PDF
    In today's dynamic business world economic success of an enterprise increasingly depends on its ability to react to internal and external changes in a quick and flexible way. In response to this need, process-aware information systems (PAIS) emerged, which support the modeling, orchestration and monitoring of business processes and services respectively. Recently, a new generation of flexible PAIS was introduced, which additionally allows for dynamic process and service changes. This, in turn, will lead to a large number of process variants, which are created from the same original process model, but might slightly differ from each other. This paper deals with issues related to the mining of such process variant collections. Our overall goal is to learn from process changes and to merge the resulting model variants into a generic process model in the best possible way. By adopting this generic process model in the PAIS, future cost of process change and need for process adaptations will decrease. Finally, we compare our approach with existing process mining techniques, and show that process variants mining is additionally needed to learn from process changes

    Discovering Process Reference Models from Process Variants Using Clustering Techniques

    Get PDF
    In today's dynamic business world, success of an enterprise increasingly depends on its ability to react to changes in a quick and flexible way. In response to this need, process-aware information systems (PAIS) emerged, which support the modeling, orchestration and monitoring of business processes and services respectively. Recently, a new generation of flexible PAIS was introduced, which additionally allows for dynamic process and service changes. This, in turn, has led to large number of process and service variants derived from the same model, but differs in structures due to the applied changes. This paper provides a sophisticated approach which fosters learning from past process changes and allows for determining such process variants. As a result we obtain a generic process model for which the average distances between this model and the process variants becomes minimal. By adopting this generic process model in the PAIS, need for future process configuration and adaptation will decrease. The mining method proposed has been implemented in a powerful proof-of-concept prototype and further validated by a comparison between other process mining algorithms

    A Heuristic Approach for Discovering Reference Models by Mining Process Model Variants

    Get PDF
    Recently, a new generation of adaptive Process-Aware Information Systems (PAISs) has emerged, which enables structural process changes during runtime while preserving PAIS robustness and consistency. Such flexibility, in turn, leads to a large number of process variants derived from the same model, but differing in structure. Generally, such variants are expensive to configure and maintain. This paper provides a heuristic search algorithm which fosters learning from past process changes by mining process variants. The algorithm discovers a reference model based on which the need for future process configuration and adaptation can be reduced. It additionally provides the flexibility to control the process evolution procedure, i.e., we can control to what degree the discovered reference model differs from the original one. As benefit, we can not only control the effort for updating the reference model, but also gain the flexibility to perform only the most important adaptations of the current reference model. Our mining algorithm is implemented and evaluated by a simulation using more than 7000 process models. Simulation results indicate strong performance and scalability of our algorithm even when facing large-sized process models

    Incorporating characteristics of human creativity into an evolutionary art algorithm

    Get PDF
    A perceived limitation of evolutionary art and design algorithms is that they rely on human intervention; the artist selects the most aesthetically pleasing variants of one generation to produce the next. This paper discusses how computer generated art and design can become more creatively human-like with respect to both process and outcome. As an example of a step in this direction, we present an algorithm that overcomes the above limitation by employing an automatic fitness function. The goal is to evolve abstract portraits of Darwin, using our 2nd generation fitness function which rewards genomes that not just produce a likeness of Darwin but exhibit certain strategies characteristic of human artists. We note that in human creativity, change is less choosing amongst randomly generated variants and more capitalizing on the associative structure of a conceptual network to hone in on a vision. We discuss how to achieve this fluidity algorithmically

    Incorporating characteristics of human creativity into an evolutionary art algorithm (journal article)

    Get PDF
    A perceived limitation of evolutionary art and design algorithms is that they rely on human intervention; the artist selects the most aesthetically pleasing variants of one generation to produce the next. This paper discusses how computer generated art and design can become more creatively human-like with respect to both process and outcome. As an example of a step in this direction, we present an algorithm that overcomes the above limitation by employing an automatic fitness function. The goal is to evolve abstract portraits of Darwin, using our 2nd generation fitness function which rewards genomes that not just produce a likeness of Darwin but exhibit certain strategies characteristic of human artists. We note that in human creativity, change is less choosing amongst randomly generated variants and more capitalizing on the associative structure of a conceptual network to hone in on a vision. We discuss how to achieve this fluidity algorithmically

    What are the Problem Makers: Ranking Activities According to their Relevance for Process Changes

    Get PDF
    Recently, a new generation of adaptive process management technology has emerged, which enables dynamic changes of composite services and process models respectively. This, in turn, results in a large number of process variants derived from the same process model, but differing in structure due to the applied changes. Since such process variants are expensive to maintain, the process model should be evolved accordingly. In this context, we need to know which activities have been more often involved in process adaptations than others, such that we can focus on them when reconfiguring the process model. This paper provides two approaches for ranking activities according to their involvement in process adaptations. The first one allows to precisely rank the activities, but is expensive to perform since the algorithm is at NP level. We therefore provide as alternative an approximation ranking algorithm which computes in polynomial time. The performance of the approximation algorithm is evaluated and compared through a simulation of 3600 process models. Statistical significance tests indicate that the performance of the approximation ranking algorithm does not depend on the size of process models, i.e., our algorithm can scale up

    Discovering reference process models by mining process variants

    Get PDF
    Recently, a new generation of adaptive Process-Aware Information Systems (PAIS) has emerged, which allows for dynamic process and service changes (e.g., to insert, delete, and move activities and service executions in a running process). This, in turn, has led to a large number of process variants derived from the same model, but differing in structure due to the applied changes. Generally, such process variants are expensive to configure and difficult to maintain. This paper provides a sophisticated approach which fosters learning from past process changes and allows for mining process variants. As a result we obtain a generic process model for which the average distance between this model and the respective process variants becomes minimal. By adopting this generic model in the PAIS, need for future process configuration and adaptation decreases. We have validated the proposed mining method and implemented it in a powerful proof-of-concept prototype.

    Rare Variants of Putative Candidate Genes Associated With Sporadic Meniere's Disease in East Asian Population

    Get PDF
    Objectives: The cause of Meniere's disease (MD) is unclear but likely involves genetic and environmental factors. The aim of this study was to investigate the genetic basis underlying MD by screening putative candidate genes for MD. Methods: Sixty-eight patients who met the diagnostic criteria for MD of the Barany Society were included. We performed targeted gene sequencing using next generation sequencing (NGS) panel composed of 45 MD-associated genes. We identified the rare variants causing non-synonymous amino acid changes, stop codons, and insertions/deletions in the coding regions, and excluded the common variants with minor allele frequency >0.01 in public databases. The pathogenicity of the identified variants was analyzed by various predictive tools and protein structural modeling. Results: The average read depth for the targeted regions was 1446.3-fold, and 99.4% of the targeted regions were covered by 20 or more reads, achieving the high quality of the sequencing. After variant filtering, annotation, and interpretation, we identified a total of 15 rare heterozygous variants in 12 (17.6%) sporadic patients. Among them, four variants were detected in familial MD genes (DTNA, FAM136A, DPT), and the remaining 11 in MD-associated genes (PTPN22, NFKB1, CXCL10, TLR2, MTHFR, SLC44A2, NOS3, NOTCH2). Three patients had the variants in two or more genes. All variants were not detected in our healthy controls (n = 100). No significant differences were observed between patients with and without a genetic variant in terms of sex, mean age of onset, bilaterality, the type of MD, and hearing threshold at diagnosis. Conclusions: Our study identified rare variants of putative candidate genes in some of MD patients. The genes were related to the formation of inner ear structures, the immune-associated process, or systemic hemostasis derangement, suggesting the multiple genetic predispositions in the development of MD

    Virtual Environment for Next Generation Sequencing Analysis

    Get PDF
    Next Generation Sequencing technology, on the one hand, allows a more accurate analysis, and, on the other hand, increases the amount of data to process. A new protocol for sequencing the messenger RNA in a cell, known as RNA- Seq, generates millions of short sequence fragments in a single run. These fragments, or reads, can be used to measure levels of gene expression and to identify novel splice variants of genes. The proposed solution is a distributed architecture consisting of a Grid Environment and a Virtual Grid Environment, in order to reduce processing time by making the system scalable and flexibl
    corecore