86 research outputs found

    Optical frequency comb technology for ultra-broadband radio-frequency photonics

    Full text link
    The outstanding phase-noise performance of optical frequency combs has led to a revolution in optical synthesis and metrology, covering a myriad of applications, from molecular spectroscopy to laser ranging and optical communications. However, the ideal characteristics of an optical frequency comb are application dependent. In this review, the different techniques for the generation and processing of high-repetition-rate (>10 GHz) optical frequency combs with technologies compatible with optical communication equipment are covered. Particular emphasis is put on the benefits and prospects of this technology in the general field of radio-frequency photonics, including applications in high-performance microwave photonic filtering, ultra-broadband coherent communications, and radio-frequency arbitrary waveform generation.Comment: to appear in Laser and Photonics Review

    Towards optical beamforming systems on-chip for millimeter wave wireless communications

    Get PDF

    Towards optical beamforming systems on-chip for millimeter wave wireless communications

    Get PDF

    Ultra-high-resolution software-defined photonic terahertz spectroscopy

    Get PDF
    A novel technique for high-resolution 1.5 µm photonics-enabled terahertz (THz) spectroscopy using software control of the illumination spectral line shape (SLS) is presented. The technique enhances the performance of a continuous-wave THz spectrometer to reveal previously inaccessible details of closely spaced spectral peaks. We demonstrate the technique by performing spectroscopy on LiYF4:Ho3+, a material of interest for quantum science and technology, where we discriminate between inhomogeneous Gaussian and homogeneous Lorentzian contributions to absorption lines near 0.2 THz. Ultra-high-resolution (<100 Hz full-width at half maximum) frequency-domain spectroscopy with quality factor Q > 2 × 109 is achieved using an exact frequency spacing comb source in the optical communications band, with a custom uni-traveling-carrier photodiode mixer and coherent down-conversion detection. Software-defined time-domain modulation of one of the comb lines is demonstrated and used to resolve the sample SLS and to obtain a magnetic field-free readout of the electronuclear spectrum for the Ho3+ ions in LiYF4:Ho3+. In particular, homogeneous and inhomogeneous contributions to the spectrum are readily separated. The experiment reveals previously unmeasured information regarding the hyperfine structure of the first excited state in the 5 I8 manifold complementing the results reported in Phys. Rev. B 94, 205132 (2016)

    Chip-Scale Microwave Photonic Signal Processing

    Get PDF
    The use of optical technology can provide unprecedented performance to the generation, distribution, and processing of microwave. Recently, on-chip microwave photonics (MWP) has gained significant interests for its numerous advantages, such as robustness, reconfigurability as well as reduction of size, weight, cost, and power consumption. In this chapter, we review our recent progress in ultracompact microwave photonic signal processing using silicon nanophotonic devices. Using the fabricated silicon waveguide, silicon microring resonators (MRRs) and silicon photonic crystal nanocavities, we demonstrate on-chip analog signal transmission, optically controlled tunable MWP filter, and ultra-high peak rejection notch MWP filter. The performance of analog links and the responses of MWP filters are evaluated in the experiment. In addition, microwave signal multiplication and modulation are also demonstrated based on a silicon Mach-Zehnder modulator in the experiment with favorable operation performance. The demonstrated on-chip analog links, MWP filters, microwave signal multiplication/modulation may help understand on-chip analog signaling and expand novel functionalities of MWP signal processing

    Stable Optical Frequency Comb Generation And Applications In Arbitrary Waveform Generation, Signal Processing And Optical Data M

    Get PDF
    This thesis focuses on the generation and applications of stable optical frequency combs. Optical frequency combs are defined as equally spaced optical frequencies with a fixed phase relation among themselves. The conventional source of optical frequency combs is the optical spectrum of the modelocked lasers. In this work, we investigated alternative methods for optical comb generation, such as dual sine wave phase modulation, which is more practical and cost effective compared to modelocked lasers stabilized to a reference. Incorporating these comblines, we have generated tunable RF tones using the serrodyne technique. The tuning range was ±1 MHz, limited by the electronic waveform generator, and the RF carrier frequency is limited by the bandwidth of the photodetector. Similarly, using parabolic phase modulation together with time division multiplexing, RF chirp extension has been realized. Another application of the optical frequency combs studied in this thesis is real time data mining in a bit stream. A novel optoelectronic logic gate has been developed for this application and used to detect an 8 bit long target pattern. Also another approach based on orthogonal Hadamard codes have been proposed and explained in detail. Also novel intracavity modulation schemes have been investigated and applied for various applications such as a) improving rational harmonic modelocking for repetition rate multiplication and pulse to pulse amplitude equalization, b) frequency skewed pulse generation for ranging and c) intracavity active phase modulation in amplitude modulated modelocked lasers for supermode noise spur suppression and integrated jitter reduction. The thesis concludes with comments on the future work and next steps to improve some of the results presented in this work

    Generation of Frequency Tunable and Low Phase Noise Micro- and Millimeter-Wave Signals using Photonic Technologies

    Get PDF
    The concept of generating micro- and millimeter-wave signals by optical means offers a variety of unique features compared to purely electronics such as high frequency tunability, ultra-wideband operation and the possibility to distribute micro- and millimeter-wave signals over kilometers of optical fiber to a remote site. These features make the photonic synthesizer concept a very interesting alternative for several applications in the micro- and millimeter-wave regime. This thesis focuses on the realization and characterization of different photonic synthesizer concepts for the optical generation of frequency tunable and low phase noise micro- and millimeter-wave signals. Advanced microwave photonic approaches utilizing external optical modulation and optical multiplication will be presented, offering high frequency optical millimeter-wave generation up to 110 GHz with superior performances in terms of maximum frequency tuning ranges and phase noise characteristics. In addition, the concept of a novel dual-loop optoelectronic oscillator will be presented that enables optical millimeter-wave signal generation without the need of any electronic reference oscillator. By using the developed dual-loop optoelectronic oscillator, microwave signal generation with tuning ranges in the gigahertz regime has been experimentally demonstrated for the first time.Das Konzept der optischen Mikro- und Millimeterwellen-Generation bietet gegenüber rein elektronischen Konzepten eine Vielzahl einzigartiger Möglichkeiten, bedingt durch die hohe Frequenzabstimmbarkeit, die extrem hohe Bandbreite sowie die Möglichkeit, Mikro- und Millimeterwellen-Signale über optische Fasern kilometerweit zu einer entfernten Station zu übertragen. Diese Eigenschaften machen das Konzept des photonischen Synthesizers zu einer sehr interessanten Alternative für viele Applikationen im Mikro- und Millimeterwellen-Bereich. Diese Arbeit beschäftigt sich mit der Realisierung und Charakterisierung verschiedener photonischer Synthesizer-Konzepte zur optischen Generation von frequenzabstimmbaren Mikro- und Millimeterwellen-Signalen mit geringem Phasenrauschen. Fortschrittliche photonische Konzepte unter Ausnutzung externer optischer Modulation sowie optischer Multiplikation werden vorgestellt. Diese Konzepte ermöglichen die optische Generierung hochfrequenter Millimeterwellen bis zu 110 GHz mit ausgezeichneter Performance in Bezug auf maximale Frequenzabstimmbarkeit sowie Phasenrauschen. Des Weiteren wurde ein neuartiges Konzept des optoelektronischen Oszillators, bestehend aus zwei Faserringen, vorgestellt, welches die Generierung von Millimeterwellen-Signalen ohne die Notwendigkeit eines elektronischen Referenzoszillators ermöglicht. Mit Hilfe des entwickelten optoelektronischen Oszillators wurde erstmals ein Mikrowellen-Signal mit einer Frequenzabstimmbarkeit im Gigahertz-Bereich experimentell erreicht

    Electro-optic frequency combs and their applications in high-precision metrology and high-speed communications

    Get PDF
    Optische Frequenzkämme haben sich in den letzten Jahren zu einem vielseitigen Werkzeug im Bereich der Optik und Photonik entwickelt. Sie ermöglichen den Zugang zu einer Vielzahl von schmalbandigen Spektrallinien, die einen breiten Spektralbereich abdecken und gleichzeitig hochgenau definierte Frequenzen aufweisen. Dadurch wurden Experimente in vielfältigen Anwendungsgebieten ermöglicht, zum Beispiel in den Bereichen optischer Atomuhren, der Präzisionsspektroskopie, der Frequenzmesstechnik, der Distanzmesstechnik und der optischen Telekommunikation. Allerdings umfassen übliche Frequenzkammquellen und die jeweiligen Laboraufbauten typischerweise komplexe opto-elektronische und opto-mechanische Anordnungen, welche aufgrund von Baugröße und fehlender Robustheit gegenüber Umwelteinflüssen wie Temperatur bislang kaum Einzug in breitere industrielle Anwendungen gefunden haben. Diese Arbeit legt deshalb ein besonderes Augenmerk auf die praktische Nutzbarkeit von frequenzkamm-basierten Systemen in industriellen Anwendungen. Im Fokus stehen dabei Robustheit, Kompaktheit und flexible Anpassungsmöglichkeiten an die jeweilige Anwendung. Das bezieht sich sowohl auf die Frequenzkammquellen selbst, als auch auf die zugehörigen anwendungsspezifischen optischen Systeme, in welchen die Frequenzkämme genutzt werden. In der vorliegenden Arbeit wird das Potential elektro-optischer Frequenzkämme in der optischen Messtechnik sowie der optischen Kommunikationstechnik anhand ausgewählter experimenteller Demonstrationen untersucht. Als Mittel zur Realisierung miniaturisierter optischer Systeme mit einem Flächenbedarf von wenigen Quadratmillimetern wird die photonische Integration in Silizium verfolgt. Ein integriertes System zur Frequenzkamm-basierten Distanzmessung sowie integriert-optische Frequenzkammquellen werden demonstriert. Die Erzeugung von Frequenzkämmen durch Dauerstrichlaser in Kombination mit elektro-optischen Modulatoren ist dabei ein besonders vielversprechender Ansatz. Zwar werden dabei üblicherweise kleinere optische Bandbreiten erzielt als bei der weitverbreiteten Frequenzkammerzeugung durch modengekoppelte Ultrakurzpulslaser oder durch Kerr-Nichtlinearitäten, aber es bieten sich andere wertvolle Vorteile an. So erlaubt die elektro-optische Kammerzeugung beispielsweise eine nahezu freie Wahl der Mittenfrequenz durch Auswahl oder Einstellung des Dauerstrichlasers. Durch den Einsatz verschiedener Laser können sogar gleichzeitig mehrere Frequenzkämme unterschiedlicher Mittenfrequenz erzeugt werden, was sich in verschiedenen Anwendungen vorteilhaft ausnutzen lässt. Dies wird in dieser Arbeit anhand zweier Beispiele aus der optischen Messtechnik demonstriert, siehe Kapitel 3 und Kapitel 5. Der Kammlinienabstand ist bei elektro-optisch erzeugten Kämmen definiert durch die elektronisch erzeugte Modulationsfrequenz. Das bietet mehrere Vorteile: Der Linienabstand ist frei einstellbar, sehr stabil, und einfach rückführbar auf einen Frequenzstandard. Der Verzicht auf einen optischen Resonator macht die Kammquelle robust gegenüber Umwelteinflüssen wie z.B. Vibration. Zudem machen Fortschritte bei der Entwicklung von hochintegrierten optischen Modulatoren auf Silizium eine Umsetzung der Frequenzkammquellen in Siliziumphotonik möglich. Die erste derartige Komponente und deren Anwendung in der optischen Telekommunikation wird in Kapitel 6 vorgestellt. Photonische Integration in Silizium bietet außerdem das Potential, miniaturisierte optische Systeme mit vielfältiger Funktionalität zu realisieren. Solche Systeme zeichnen sich durch extrem kleinen Platzbedarf, Kompatibilität mit hochentwickelten und massentauglichen Fertigungstechniken aus der CMOS-(Complementary Metal-Oxide-Semiconductor)-Mikroelektronik und durch die Möglichkeit zur Kointegration elektronischer Schaltungen auf demselben Chip aus. Die hohe Integrationsdichte eröffnet die Perspektive, optische Systeme z.B. für Sensorik tief in industriellen Maschinen zu integrieren. Kapitel 1 gibt eine kurze Einführung in optische Frequenzkämme und deren vielfältige Anwendungen in Wissenschaft und Technik. Der Stand der Technik zu unterschiedlichen Ansätzen zur Frequenzkammerzeugung und deren jeweiligen Eigenschaften werden diskutiert, und es werden die Vorzüge der in dieser Arbeit verwendeten elektro-optischen Frequenzkämme erläutert. Des Weiteren wird die Integration photonischer Systeme und Bauelemente auf Silizium vorgestellt. Schließlich werden die sich ergebenden Vorteile bei der Anwendung in optischer Messtechnik und optischer Telekommunikation diskutiert. Kapitel 2 fasst die physikalischen Grundlagen der Arbeit zusammen. Die Funktionsprinzipien elektro-optischer Modulatoren werden beschrieben sowie deren Anwendung zur Erzeugung von Frequenzkämmen. Zusätzlich wird das Konzept sogenannter synthetischer Wellenlängen eingeführt, welches in der optischen Distanzmesstechnik Anwendung findet. Kapitel 3 beschreibt ein Prinzip zur Distanzmessung mittels zweier elektro-optischer Frequenzkämme zur kontaktlosen Vermessung technischer Objekte. Die Leistungsfähigkeit des Ansatzes wird durch eine Erfassung von ausgedehnten Oberflächenprofilen in Form von Punktwolken demonstriert, wobei eine verhältnismäßig kurze Messzeit von 9.1 µs pro Punkt ausreichend ist. Dabei wird der faseroptisch angebundene Sensorkopf von einer Koordinatenmessmaschine über die Oberfläche bewegt. Durch Temperaturschwankungen im faser-optischen Aufbau ausgelöste Messabweichungen werden durch die Messung mit Lasern unterschiedlicher Emissionsfrequenz kompensiert. Kapitel 4 beschreibt ein integriert-optisches System auf Silizium zur frequenzkamm-basierten Distanzmessung. Das System beinhaltet das zum Heterodynempfang genutzte Interferometer inklusive eines einstellbaren Leistungsteilers sowie der Photodetektoren. Der Platzbedarf aller Komponenten auf dem Siliziumchip beträgt 0.25 mm2^{2}. Der Chip wird in dem in Kapitel 3 eingeführten Messverfahren eingesetzt, wobei Distanzmessungen mit Root-mean-square-Fehlern von 3.2 µm und 14 µs Erfassungszeit demonstriert werden. Kapitel 5 stellt ein Distanzmesssystem vor, bei welchem eine grobauflösende Phasenlaufzeitmessung mit großem Eindeutigkeitsbereich mit einer interferometrischen Distanzmessung mit synthetischen Wellenlängen zur Verfeinerung der Messgenauigkeit kombiniert wird. Die durch vier Laser erzeugten synthetischen Wellenlängen bzw. die Frequenzabstände der Laser werden zeitgleich zur Distanzmessung mittels eines auf elektro-optischer Modulation basierenden Verfahrens vermessen. Durch diese Referenzierung wird der Einsatz freilaufender Laser ohne Wellenlängenstabilisierung ermöglicht. Es werden Messraten von 300 Hz und Genauigkeiten im Mikrometerbereich erreicht. Kapitel 6 beschreibt die weltweit erste Demonstration elektro-optischer Frequenzkammquellen auf Silizium und die hierzu genutzte hybride Materialplattform aus Silizium und organischen Materialien (Silicon-Organic Hybrid, SOH). Spektral flache Frequenzkämme mit 7 Linien innerhalb von 2 dB und Linienabständen von 25 GHz und 40 GHz werden erzeugt. Die praktische Anwendbarkeit solcher Frequenzkämme wird durch eine Reihe von Datenübertragungexperimenten demonstriert. Die einzelnen Kammlinien dienen als Träger für Daten in einem Wellenlängenmultiplex-System, womit eine spektral effiziente Datenübertragung mit Datenraten von über 1 Tbit/s über Distanzen von bis zu 300 km demonstriert wird. Kapitel 7 fasst die Ergebnisse der vorliegenden Arbeit zusammen und gibt einen Ausblick auf die Möglichkeiten, die sich durch weiterentwickelte Kammquellen und fortschreitende Möglichkeiten in der photonischen Integration ergeben

    Millimeter-wave and terahertz optical heterodyne photonic integrated circuits for high data rate wireless communications

    Get PDF
    The data rate of wireless communications systems has been increasing because of the new applications that today’s society are applying. The prospective data rate for wireless communications in the marketplace will be 100 Gbps within 10 years. Therefore, to enable such data rates the use of millimetre and terahertz (THz) waves, whose frequencies range from 100 GHz to 1 THz, for broadband wireless communications is very suitable and efficient. At frequencies above 100 GHz, GaAs and InP based devices and integrated circuits (ICs) have been key players in THz communications research, because of high cut-off and maximum frequencies of transistors. In fact, the photonics-based transmitter has become more effective to achieve higher data rates of over 20 Gbps. This could be realized thanks to the availability of telecom-based high-frequency components such as lasers, modulators and photodiodes (O-E converters). The use of optical fiber cables enables us to distribute high-frequency RF signals over long distances, and makes the size of transmitter frontends compact and light. Regarding the photonics-based receiver, photodiode is the photonic component best suited to be a signal downconverter. It is used an enveloped detector, so an easy modulation format such as on-off keying shifting (OOK) can be used to recover the transmitted data. Most common optical continuous wave (CW) signal generator is based on an optical heterodyning, using a dual-wavelength optical source. In this technique, two optical wavelengths λ1 and λ2 are mixed on a photodiode or a photoconductor to generate an electrical beat note with its frequency being determined by the difference of the two optical wavelengths. There are different solutions to implement the dual wavelength source. The most straightforward source involves combining the light from two independent different single-frequency semiconductor lasers. The most straightforward approach to implement these signal generation schemes is to assemble the required discrete components. However, the optical fiber connections that are required introduce many problems, including path length variations due to thermal variations. A novel approach, that is becoming readily available nowadays, is to use photonic integration techniques. Photonic integration allows placing all of the required components onto a single chip. This has several advantages, starting from eliminating fiber coupling losses among the different components. Besides, a reduced size of the components gives a result a cost-effective solution.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Tadao Nagatsuma.- Secretario: Horacio Lamela Rivera.- Vocal: Íñigo Molina Fernánde

    Optical packet networks : enabling innovative switching technologies

    Get PDF
    Les réseaux informatiques avec une grande capacité nécessitent des liaisons de transmission de données rapides et fiables pour prendre en charge les applications web en pleine croissance. Comme le nombre de serveurs interconnectés et la capacité de stockage des médias ne cessent daugmenter, les communications optiques et les technologies de routage sont devenues intéressantes grâce au taux binaire élevé et à lencombrement minimum offert par la fibre optique. Les réseaux optiques à commutation de paquets (OPSNs) offrent une flexibilité accrue dans la gestion de réseau. OPSNs exploitent les convertisseurs de longueur donde accordables (WC) pour minimiser la probabilité de blocage et fournir une allocation dynamique des longueurs donde. Les émetteurs optiques basés sur des sources multi-longueurs donde se présentent comme une solution intéressante en termes de coût, dencombrement et defficacité énergétique par rapport aux autres types de lasers. Les convertisseurs de longueurs donde doivent permettre des taux binaires élevés et une transparence à une grande variété de formats de modulation, tout en offrant une réponse rapide, des niveaux de puissance modérés et un rapport de signal à bruit optique (OSNR) acceptable à la sortie. Plusieurs technologies de conversion de longueur donde ont été proposées dans la littérature. Lutilisation du mélange à quatre ondes (FWM) dans les amplificateurs optiques à semi-conducteurs (SOA) permet lutilisation de faibles niveaux de puissance dentrée et offre une bonne efficacité de conversion ainsi que la possibilité dintégration photonique. Les SOAs offrent donc un excellent compromis par rapport aux autres solutions. Pour couvrir une plus large bande de conversion, nous utilisons le schéma exploitant le FWM avec doubles pompes dans les SOAs. Pour la stabilité de phase, les pompes viennent d’un laser en mode bloqué (QDMLL) qui sert comme source multi-longueurs donde. Deux modes du QDMLL sont sélectionnés par un filtrage accordable et servent comme doubles pompes. Un filtre accordable placé à la sortie du SOA sert à sélectionner le produit du FWM pour le signal final. Nous étudions le convertisseur de longueur donde proposé et comparons sa performance pour différents formats de modulation (modulation dintensité et de phase) et à différents débits binaires (10 et 40 Gbit/s). Le taux derreur binaire, lefficacité de conversion et la mesure de lOSNR sont présentés. Nous démontrons aussi la possibilité de simultanément convertir en longueurs donde les données et l’étiquette. Les données à haut débit et l’étiquette à faible débit se retrouvent dans une seule bande de longueurs d’onde, et ils sont convertis ensemble avec une bonne efficacité. Notre démonstration se concentre sur les performances de conversion, donc les données et létiquette sont des signaux continus plutôt que de paquets optiques. Des mesures de taux derreur binaire ont été effectuées à la fois pour les données et pour létiquette. Nous proposons aussi lutilisation de QDMLL comme source de transmetteurs WDM pour deux applications différentes: unicast et multicast. Nous démontrons aussi sa compatibilité avec le format de transmission DQPSK à haut débit binaire. Nous évaluons la performance du DQPSK en terme de taux derreur binaire et comparons sa performance à celle dune source laser à cavité externe.Large scale computer networks require fast and reliable data links in order to support growing web applications. As the number of interconnected servers and storage media increases, optical communications and routing technologies become interesting because of the high speed and small footprint of optical fiber links. Furthermore, optical packet switched networks (OPSN) provide increased flexibility in network management. Future networks are envisaged to be wavelength dependent routing, therefore OPSN will exploit tunable wavelength converters (WC) to enable contention resolution, reduce wavelength blocking in wavelength routing and switching, and provide dynamic wavelength assignment. Optical transmitters based on multi-wavelength sources are presented as an attrative solution compared to a set of single distributed feedback lasers in terms of cost, footprint and power consumption. Wavelength converters should support high bit rates and a variety of signal formats, have fast setup time, moderate input power levels and high optical signal-to-noise ratio at the output. Several wavelength conversion technologies have been demonstrated. The use of four wave mixing (FWM) in semiconductor optical amplifiers (SOAs) provides low input power levels, acceptable conversion efficiency and the possibility of photonic integration. SOAs therefore offer excellent trade-offs compared to other solutions. To achieve wide wavelength coverage and integrability, we use a dual pump scheme exploiting four-wave mixing in semiconductor optical amplifiers. For phase stability, we use a quantum-dash mode-locked laser (QD-MLL) as a multi-wavelength source for the dual pumps, with tunability provided by the frequency selective filter. We investigate the proposed wavelength converter and compare its performance of wavelength conversion for different non-return-to-zero (NRZ) intensity and phase modulation formats at different bit rates (10 and 40 Gbit/s). Bit error rate, conversion efficiency and optical signal-to-noise ratio measurements are reported. We demonstrate the possibility of tightly packed payload and label wavelength conversion at very high data baud rate over wide tuning range with good conversion efficiency. Our demonstration concentrates on conversion performance, hence continuous payload and label signals were used without gating into packets. Bit error measurements for both payload and label were performed. We propose the use of QD-MLL as multi-wavelength source for WDM unicast and multicast applications and we investigated its compatibility with DQPSK transmission at high bit rate. We quantify DQPSK performance via bit error rate measurements and compare performance to that of an external cavity laser (ECL) source
    • …
    corecore