31,575 research outputs found

    Automatic Test Generation for Space

    Get PDF
    The European Space Agency (ESA) uses an engine to perform tests in the Ground Segment infrastructure, specially the Operational Simulator. This engine uses many different tools to ensure the development of regression testing infrastructure and these tests perform black-box testing to the C++ simulator implementation. VST (VisionSpace Technologies) is one of the companies that provides these services to ESA and they need a tool to infer automatically tests from the existing C++ code, instead of writing manually scripts to perform tests. With this motivation in mind, this paper explores automatic testing approaches and tools in order to propose a system that satisfies VST needs

    JWalk: a tool for lazy, systematic testing of java classes by design introspection and user interaction

    Get PDF
    Popular software testing tools, such as JUnit, allow frequent retesting of modified code; yet the manually created test scripts are often seriously incomplete. A unit-testing tool called JWalk has therefore been developed to address the need for systematic unit testing within the context of agile methods. The tool operates directly on the compiled code for Java classes and uses a new lazy method for inducing the changing design of a class on the fly. This is achieved partly through introspection, using Java’s reflection capability, and partly through interaction with the user, constructing and saving test oracles on the fly. Predictive rules reduce the number of oracle values that must be confirmed by the tester. Without human intervention, JWalk performs bounded exhaustive exploration of the class’s method protocols and may be directed to explore the space of algebraic constructions, or the intended design state-space of the tested class. With some human interaction, JWalk performs up to the equivalent of fully automated state-based testing, from a specification that was acquired incrementally

    The JKind Model Checker

    Full text link
    JKind is an open-source industrial model checker developed by Rockwell Collins and the University of Minnesota. JKind uses multiple parallel engines to prove or falsify safety properties of infinite state models. It is portable, easy to install, performance competitive with other state-of-the-art model checkers, and has features designed to improve the results presented to users: inductive validity cores for proofs and counterexample smoothing for test-case generation. It serves as the back-end for various industrial applications.Comment: CAV 201

    Automated Workarounds from Java Program Specifications based on SAT Solving

    Get PDF
    The failures that bugs in software lead to can sometimes be bypassed by the so-called workarounds: when a (faulty) routine fails, alternative routines that the system offers can be used in place of the failing one, to circumvent the failure. Existing approaches to workaround-based system recovery consider workarounds that are produced from equivalent method sequences, automatically computed from user-provided abstract models, or directly produced from user-provided equivalent sequences of operations. In this paper, we present two techniques for computing workarounds from Java code equipped with formal specifications, that improve previous approaches in two respects. First, the particular state where the failure originated is actively involved in computing workarounds, thus leading to repairs that are more state specific. Second, our techniques automatically compute workarounds on concrete program state characterizations, avoiding abstract software models and user-provided equivalences. The first technique uses SAT solving to compute a sequence of methods that is equivalent to a failing method on a specific failing state, but which can also be generalized to schemas for workaround reuse. The second technique directly exploits SAT to circumvent a failing method, building a state that mimics the (correct) behaviour of a failing routine, from a specific program state too. We perform an experimental evaluation based on case studies involving implementations of collections and a library for date arithmetic, showing that the techniques can effectively compute workarounds from complex contracts in an important number of cases, in time that makes them feasible to be used for run-time repairs. Our results also show that our state-specific workarounds enable us to produce repairs in many cases where previous workaround-based approaches are inapplicable.Fil: Uva, Marcelo Ariel. Universidad Nacional de Río Cuarto; ArgentinaFil: Ponzio, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto; ArgentinaFil: Regis, Germán. Universidad Nacional de Río Cuarto; ArgentinaFil: Aguirre, Nazareno Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto; ArgentinaFil: Frias, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Instituto Tecnológico de Buenos Aires; Argentin

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    COST Action IC 1402 ArVI: Runtime Verification Beyond Monitoring -- Activity Report of Working Group 1

    Full text link
    This report presents the activities of the first working group of the COST Action ArVI, Runtime Verification beyond Monitoring. The report aims to provide an overview of some of the major core aspects involved in Runtime Verification. Runtime Verification is the field of research dedicated to the analysis of system executions. It is often seen as a discipline that studies how a system run satisfies or violates correctness properties. The report exposes a taxonomy of Runtime Verification (RV) presenting the terminology involved with the main concepts of the field. The report also develops the concept of instrumentation, the various ways to instrument systems, and the fundamental role of instrumentation in designing an RV framework. We also discuss how RV interplays with other verification techniques such as model-checking, deductive verification, model learning, testing, and runtime assertion checking. Finally, we propose challenges in monitoring quantitative and statistical data beyond detecting property violation

    Semantic Component Composition

    Full text link
    Building complex software systems necessitates the use of component-based architectures. In theory, of the set of components needed for a design, only some small portion of them are "custom"; the rest are reused or refactored existing pieces of software. Unfortunately, this is an idealized situation. Just because two components should work together does not mean that they will work together. The "glue" that holds components together is not just technology. The contracts that bind complex systems together implicitly define more than their explicit type. These "conceptual contracts" describe essential aspects of extra-system semantics: e.g., object models, type systems, data representation, interface action semantics, legal and contractual obligations, and more. Designers and developers spend inordinate amounts of time technologically duct-taping systems to fulfill these conceptual contracts because system-wide semantics have not been rigorously characterized or codified. This paper describes a formal characterization of the problem and discusses an initial implementation of the resulting theoretical system.Comment: 9 pages, submitted to GCSE/SAIG '0

    A Historical Perspective on Runtime Assertion Checking in Software Development

    Get PDF
    This report presents initial results in the area of software testing and analysis produced as part of the Software Engineering Impact Project. The report describes the historical development of runtime assertion checking, including a description of the origins of and significant features associated with assertion checking mechanisms, and initial findings about current industrial use. A future report will provide a more comprehensive assessment of development practice, for which we invite readers of this report to contribute information
    • …
    corecore