1,838 research outputs found

    Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

    Get PDF
    The rollback operation is a fundamental building block to support the correct execution of a speculative Time Warp-based Parallel Discrete Event Simulation. In the literature, several solutions to reduce the execution cost of this operation have been proposed, either based on the creation of a checkpoint of previous simulation state images, or on the execution of negative copies of simulation events which are able to undo the updates on the state. In this paper, we explore the practical design and implementation of a state recoverability technique which allows to restore a previous simulation state either relying on checkpointing or on the reverse execution of the state updates occurred while processing events in forward mode. Differently from other proposals, we address the issue of executing backward updates in a fully-transparent and event granularity-independent way, by relying on static software instrumentation (targeting the x86 architecture and Linux systems) to generate at runtime reverse update code blocks (not to be confused with reverse events, proper of the reverse computing approach). These are able to undo the effects of a forward execution while minimizing the cost of the undo operation. We also present experimental results related to our implementation, which is released as free software and fully integrated into the open source ROOT-Sim (ROme OpTimistic Simulator) package. The experimental data support the viability and effectiveness of our proposal

    Autonomic State Management for Optimistic Simulation Platforms

    Get PDF
    We present the design and implementation of an autonomic state manager (ASM) tailored for integration within optimistic parallel discrete event simulation (PDES) environments based on the C programming language and the executable and linkable format (ELF), and developed for execution on x8664 architectures. With ASM, the state of any logical process (LP), namely the individual (concurrent) simulation unit being part of the simulation model, is allowed to be scattered on dynamically allocated memory chunks managed via standard API (e.g., malloc/free). Also, the application programmer is not required to provide any serialization/deserialization module in order to take a checkpoint of the LP state, or to restore it in case a causality error occurs during the optimistic run, or to provide indications on which portions of the state are updated by event processing, so to allow incremental checkpointing. All these tasks are handled by ASM in a fully transparent manner via (A) runtime identification (with chunk-level granularity) of the memory map associated with the LP state, and (B) runtime tracking of the memory updates occurring within chunks belonging to the dynamic memory map. The co-existence of the incremental and non-incremental log/restore modes is achieved via dual versions of the same application code, transparently generated by ASM via compile/link time facilities. Also, the dynamic selection of the best suited log/restore mode is actuated by ASM on the basis of an innovative modeling/optimization approach which takes into account stability of each operating mode with respect to variations of the model/environmental execution parameters

    CHERI: a research platform deconflating hardware virtualisation and protection

    Get PDF
    Contemporary CPU architectures conflate virtualization and protection, imposing virtualization-related performance, programmability, and debuggability penalties on software requiring finegrained protection. First observed in micro-kernel research, these problems are increasingly apparent in recent attempts to mitigate software vulnerabilities through application compartmentalisation. Capability Hardware Enhanced RISC Instructions (CHERI) extend RISC ISAs to support greater software compartmentalisation. CHERI’s hybrid capability model provides fine-grained compartmentalisation within address spaces while maintaining software backward compatibility, which will allow the incremental deployment of fine-grained compartmentalisation in both our most trusted and least trustworthy C-language software stacks. We have implemented a 64-bit MIPS research soft core, BERI, as well as a capability coprocessor, and begun adapting commodity software packages (FreeBSD and Chromium) to execute on the platform

    Virtualization for a Network Processor Runtime System

    Get PDF
    The continuing ossification of the Internet is slowing the pace of network innovation. Network diversification presents one solution to this problem, by virtualizing the network at multiple layers. Diversified networks consist of a shared physical substrate, virtual routers (metarouters), and virtual links (metalinks). Virtualizing routers enables smooth and incremental upgrades to new network services. Our current priority for a diversified router prototype is to enable reserved slices of the network for researchers to perform repeatable, high-speed network experiments. General-purpose processors have well established techniques for virtualization, but do not scale efficiently to multi-gigabit speeds. To achieve these speeds, we employ network processors (NPs), typically consisting of multicore, multi-threaded processors with asymmetric, heterogeneous memories. The complexity and lack of hardware thread isolation in NP’s, combined with a lack of simple programming models, creates numerous challenges for effective sharing between metarouters. In this paper, we detail strategies for enabling NP virtualization at the link, memory, and processor levels, to better enable a research infrastructure for network innovation

    Transparent multi-core speculative parallelization of DES models with event and cross-state dependencies

    Get PDF
    In this article we tackle transparent parallelization of Discrete Event Simulation (DES) models to be run on top of multi-core machines according to speculative schemes. The innovation in our proposal lies in that we consider a more general programming and execution model, compared to the one targeted by state of the art PDES platforms, where the boundaries of the state portion accessible while processing an event at a specific simulation object do not limit access to the actual object state, or to shared global variables. Rather, the simulation object is allowed to access (and alter) the state of any other object, thus causing what we term cross-state dependency. We note that this model exactly complies with typical (easy to manage) sequential-style DES programming, where a (dynamically-allocated) state portion of object A can be accessed by object B in either read or write mode (or both) by, e.g., passing a pointer to B as the payload of a scheduled simulation event. However, while read/write memory accesses performed in the sequential run are always guaranteed to observe (and to give rise to) a consistent snapshot of the state of the simulation model, consistency is not automatically guaranteed in case of parallelization and concurrent execution of simulation objects with cross-state dependencies. We cope with such a consistency issue, and its application-transparent support, in the context of parallel and optimistic executions. This is achieved by introducing an advanced memory management architecture, able to efficiently detect read/write accesses by concurrent objects to whichever object state in an application transparent manner, together with advanced synchronization mechanisms providing the advantage of exploiting parallelism in the underlying multi-core architecture while transparently handling both cross-state and traditional event-based dependencies. Our proposal targets Linux and has been integrated with the ROOT-Sim open source optimistic simulation platform, although its design principles, and most parts of the developed software, are of general relevance. Copyright 2014 ACM

    ENTRA:Whole-systems energy transparency

    Get PDF
    Promoting energy efficiency to a first class system design goal is an important research challenge. Although more energy-efficient hardware can be designed, it is software that controls the hardware; for a given system the potential for energy savings is likely to be much greater at the higher levels of abstraction in the system stack. Thus the greatest savings are expected from energy-aware software development, which is the vision of the EU ENTRA project. This article presents the concept of energy transparency as a foundation for energy-aware software development. We show how energy modelling of hardware is combined with static analysis to allow the programmer to understand the energy consumption of a program without executing it, thus enabling exploration of the design space taking energy into consideration. The paper concludes by summarising the current and future challenges identified in the ENTRA project.Comment: Revised preprint submitted to MICPRO on 27 May 2016, 23 pages, 3 figure

    Garbage Collection for Java Distributed Objects

    Get PDF
    We present a distributed garbage collection algorithm for Java distributed objects using the object model provided by the Java Support for Distributed Objects (JSDA) object model and using weak references in Java. The algorithm can also be used for any other Java based distributed object models that use the stub-skeleton paradigm. Furthermore, the solution could also be applied to any language that supports weak references as a mean of interaction with the local garbage collector. We also give a formal definition and a proof of correctness for the proposed algorithm
    • …
    corecore