753 research outputs found

    Optoelectronic Oscillators

    Get PDF
    Patrice Salzenstein (2011). Optoelectronic Oscillators, Optoelectronic Devices and Properties, Oleg Sergiyenko (Ed.), ISBN: 978-953-307-204-3, InTech, Available from: http://www.intechopen.com/articles/show/title/optoelectronic-oscillatorsOptoelectronic devices impact many areas of society, from simple household appliances and multimedia systems to communications, computing, spatial scanning, optical monitoring, 3D measurements and medical instruments. This is the most complete book about optoelectromechanic systems and semiconductor optoelectronic devices; it provides an accessible, well-organized overview of optoelectronic devices and properties that emphasizes basic principles

    Complex Dynamics and Synchronization of Delayed-Feedback Nonlinear Oscillators

    Full text link
    We describe a flexible and modular delayed-feedback nonlinear oscillator that is capable of generating a wide range of dynamical behaviours, from periodic oscillations to high-dimensional chaos. The oscillator uses electrooptic modulation and fibre-optic transmission, with feedback and filtering implemented through real-time digital-signal processing. We consider two such oscillators that are coupled to one another, and we identify the conditions under which they will synchronize. By examining the rates of divergence or convergence between two coupled oscillators, we quantify the maximum Lyapunov exponents or transverse Lyapunov exponents of the system, and we present an experimental method to determine these rates that does not require a mathematical model of the system. Finally, we demonstrate a new adaptive control method that keeps two oscillators synchronized even when the coupling between them is changing unpredictably.Comment: 24 pages, 13 figures. To appear in Phil. Trans. R. Soc. A (special theme issue to accompany 2009 International Workshop on Delayed Complex Systems

    Harnessing optical micro-combs for microwave photonics

    Full text link
    In the past decade, optical frequency combs generated by high-Q micro-resonators, or micro-combs, which feature compact device footprints, high energy efficiency, and high-repetition-rates in broad optical bandwidths, have led to a revolution in a wide range of fields including metrology, mode-locked lasers, telecommunications, RF photonics, spectroscopy, sensing, and quantum optics. Among these, an application that has attracted great interest is the use of micro-combs for RF photonics, where they offer enhanced functionalities as well as reduced size and power consumption over other approaches. This article reviews the recent advances in this emerging field. We provide an overview of the main achievements that have been obtained to date, and highlight the strong potential of micro-combs for RF photonics applications. We also discuss some of the open challenges and limitations that need to be met for practical applications.Comment: 32 Pages, 13 Figures, 172 Reference

    Emerging applications of integrated optical microcombs for analogue RF and microwave photonic signal processing

    Full text link
    We review new applications of integrated microcombs in RF and microwave photonic systems. We demonstrate a wide range of powerful functions including a photonic intensity high order and fractional differentiators, optical true time delays, advanced filters, RF channelizer and other functions, based on a Kerr optical comb generated by a compact integrated microring resonator, or microcomb. The microcomb is CMOS compatible and contains a large number of comb lines, which can serve as a high performance multiwavelength source for the transversal filter, thus greatly reduce the cost, size, and complexity of the system. The operation principle of these functions is theoretically analyzed, and experimental demonstrations are presented.Comment: 16 pages, 8 figures, 136 References. Photonics West 2018 invited paper, expanded version. arXiv admin note: substantial text overlap with arXiv:1710.00678, arXiv:1710.0861

    Optoelectronic oscillator with low temperature induced frequency drift

    No full text
    We demonstrate a hollow-core photonic bandgap fiber delay-line based 10 GHz Optoelectronic oscillator (OEO) with over 6 times less temperature induced frequency drift compared to a standard single mode fiber delay-line based OEO

    Microwave Signal Processing over Multicore Fiber

    Full text link
    [EN] We review the introduction of the space dimension into fiber-based technologies to implement compact and versatile signal processing solutions for microwave and millimeter wave signals. Built upon multicore fiber links and devices, this approach allows the realization of fiber-distributed signal processing in the context of fiber-wireless communications, providing both radiofrequency access distribution and signal processing in the same fiber medium. We present different space-division multiplexing architectures to implement tunable true time delay lines that can be applied to a variety of microwave photonics functionalities, such as signal filtering, radio beamsteering in phased array antennas or optoelectronic oscillation. In particular, this paper gathers our latest work on the following multicore fiber technologies: dispersion-engineered heterogeneous multicore fiber links for distributed tunable true time delay line operation; multicavity devices built upon the selective inscription of gratings in homogenous multicore fibers for compact true time delay line operation; and multicavity optoelectronic oscillation over both homogeneous and heterogeneous multicore fibers.This research was supported by the ERC Consolidator Grant 724663; the Spanish Projects TEC2015-62520-ERC, TEC2014-60378-C2-1-R and TEC2016-80150-R; the Valencian Research Excellency Award Program GVA PROMETEO 2013/012; the Spanish MECD FPU Scholarship (FPU13/04675) for J. Hervás; the Spanish scholarships MINECO BES-2015-073359 for S. García; and the Spanish MINECO Ramon y Cajal program RYC-2014-16247 for I. Gasulla.García Cortijo, S.; Barrera Vilar, D.; Hervás-Peralta, J.; Sales Maicas, S.; Gasulla Mestre, I. (2017). Microwave Signal Processing over Multicore Fiber. Photonics. 4(49):1-14. https://doi.org/10.3390/photonics404004911444

    Simulation of optoelectronic oscillator injection locking, pulling and spiking phenomena

    Full text link
    Complex envelope and reduced phase simulation models describing the dynamical behavior of an optoelectronic oscillator (OEO) under injection by an external source are described. The models are built on the foundations of a previously reported delay integral differential equation (DDE) theory of injection locking of time delay oscillators (TDO) such as the OEO. The DDE formulation is particularly amenable to high precision simulation using the Simulink block diagram environment. The correspondence between the blocks and the oscillator components offers intuition and considerable freedom to explore different circuit architectures and design variations with minimal coding effort. The simulations facilitate the study of the profound effect the multimode nature of a TDO has on its dynamical behavior. The reduced phase models that make use of the Leeson approximation are generally successful in reproducing the results of complex envelope models for established oscillations except for spiking phenomena for which the Leeson approximation fails. Simulation results demonstrating phenomena not captured by classical injection theory are presented, including multimode oscillation, the appearance of sidemodes in the RF and phase noise spectrum, and persistent spike trains redolent of recent experimental observations of 2pi phase pulse trains in a broadband OEO under injection

    Optoelectronic mixer with a photoconductive switch for 1550 nm wavelengths

    Get PDF
    We demonstrate an optoelectronic mixer based on an ultrafast InGaAs photoconductive switch and its use in an innovative heterodyne detection system for Radio over Fibre transmission. The advantage of the proposed switch is its relatively flat response curve in a wide frequency range up to 67 GHz. Two mixing schemes are presented through I-Q modulated data-stream down-conversion. The data can modulate either the electrical signal or the optical signal. In case the electrical signal is modulated, a mode-locked semiconductor laser diode is used as an optical local oscillator at the self-oscillating frequency of 24.5 GHz. The InP based quantum-dash mode-locked laser emitting in the 1570 nm wavelength range is stabilized by a feedback loop and shows a low phase noise in order to increase the mixing performances of the detection apparatus. In a second experiment, the photoconductive switch is combined with a continuous wave laser to demonstrate the feasibility of down converting an optically provided data-stream with an electrical local oscillator

    Optical frequency comb technology for ultra-broadband radio-frequency photonics

    Full text link
    The outstanding phase-noise performance of optical frequency combs has led to a revolution in optical synthesis and metrology, covering a myriad of applications, from molecular spectroscopy to laser ranging and optical communications. However, the ideal characteristics of an optical frequency comb are application dependent. In this review, the different techniques for the generation and processing of high-repetition-rate (>10 GHz) optical frequency combs with technologies compatible with optical communication equipment are covered. Particular emphasis is put on the benefits and prospects of this technology in the general field of radio-frequency photonics, including applications in high-performance microwave photonic filtering, ultra-broadband coherent communications, and radio-frequency arbitrary waveform generation.Comment: to appear in Laser and Photonics Review
    • …
    corecore