3,022 research outputs found

    Senior Thesis ST 2011-02

    Get PDF
    Agriculture in the Arctic is often limited by the low receipt of heat energy, which is often measured in growing degree days (GDD). With the advent of increasingly powerful climate modeling, projection and downscaling techniques, it is becoming possible to examine future climates in high resolution. Recent availability in Alaska has prompted interest in examining the distribution of current and the potential future of local agriculture. The goal of this study was to utilize Scenarios Network for Alaska Planning (SNAP) downscaled, ensemble projections to examine this in terms of GDDs in the Fairbanks North Star Borough of Alaska. Historic and projected monthly mean temperatures were utilized to calculate GDDs and then map the borough at a 4 km2 scale. Additionally, local agriculturalists were interviewed in order to put these theoretical calculations into context. Ultimately, projections of the examined agricultural locations showed an average of a 2% increase in GDD per decade and a 26% increase in GDDs from 1949 to 2099. This project indicated that the North Star Borough will receive increased heat energy due to climate change over the next century that may further enable increased yields and varieties of crops

    Probabilistic downscaling of remote sensing data with applications for multi-scale biogeochemical flux modeling

    Get PDF
    Upscaling ecological information to larger scales in space and downscaling remote sensing observations or model simulations to finer scales remain grand challenges in Earth system science. Downscaling often involves inferring subgrid information from coarse-scale data, and such ill-posed problems are classically addressed using regularization. Here, we apply two-dimensional Tikhonov Regularization (2DTR) to simulate subgrid surface patterns for ecological applications. Specifically, we test the ability of 2DTR to simulate the spatial statistics of high-resolution (4 m) remote sensing observations of the normalized difference vegetation index (NDVI) in a tundra landscape. We find that the 2DTR approach as applied here can capture the major mode of spatial variability of the high-resolution information, but not multiple modes of spatial variability, and that the Lagrange multiplier (γ) used to impose the condition of smoothness across space is related to the range of the experimental semivariogram. We used observed and 2DTR-simulated maps of NDVI to estimate landscape-level leaf area index (LAI) and gross primary productivity (GPP). NDVI maps simulated using a γ value that approximates the range of observed NDVI result in a landscape-level GPP estimate that differs by ca 2% from those created using observed NDVI. Following findings that GPP per unit LAI is lower near vegetation patch edges, we simulated vegetation patch edges using multiple approaches and found that simulated GPP declined by up to 12% as a result. 2DTR can generate random landscapes rapidly and can be applied to disaggregate ecological information and compare of spatial observations against simulated landscapes

    Tools for Assessing Climate Impacts on Fish and Wildlife

    Get PDF
    Climate change is already affecting many fish and wildlife populations. Managing these populations requires an understanding of the nature, magnitude, and distribution of current and future climate impacts. Scientists and managers have at their disposal a wide array of models for projecting climate impacts that can be used to build such an understanding. Here, we provide a broad overview of the types of models available for forecasting the effects of climate change on key processes that affect fish and wildlife habitat (hydrology, fire, and vegetation), as well as on individual species distributions and populations. We present a framework for how climate-impacts modeling can be used to address management concerns, providing examples of model-based assessments of climate impacts on salmon populations in the Pacific Northwest, fire regimes in the boreal region of Canada, prairies and savannas in the Willamette Valley-Puget Sound Trough-Georgia Basin ecoregion, and marten Martes americana populations in the northeastern United States and southeastern Canada. We also highlight some key limitations of these models and discuss how such limitations should be managed. We conclude with a general discussion of how these models can be integrated into fish and wildlife management

    A convolutional neural network for spatial downscaling of satellite-based solar-induced chlorophyll fluorescence (SIFnet)

    Get PDF
    Gross primary productivity (GPP) is the sum of leaf photosynthesis and represents a crucial component of the global carbon cycle. Space-borne estimates of GPP typically rely on observable quantities that co-vary with GPP such as vegetation indices using reflectance measurements (e.g., NDVI, NIRv, and kNDVI). Recent work has also utilized measurements of solar-induced chlorophyll fluorescence (SIF) as a proxy for GPP. However, these SIF measurements are typically coarse resolution while many processes influencing GPP occur at fine spatial scales. Here, we develop a Convolutional Neural Network (CNN), named SIFnet, that increases the resolution of SIF from the TROPOspheric Monitoring Instrument (TROPOMI) on board of the satellite Sentinel-5P by a factor of 10 to a spatial resolution of 500 m. SIFnet utilizes coarse SIF observations together with high resolution auxiliary data. The auxiliary data used here may carry information related to GPP and SIF. We use training data from non-US regions between April 2018 until March 2021 and evaluate our CNN over the conterminous United States (CONUS). We show that SIFnet is able to increase the resolution of TROPOMI SIF by a factor of 10 with a r2 and RMSE metrics of 0.92 and 0.17 mW m&minus;2 sr&minus;1 nm&minus;1, respectively. We further compare SIFnet against a recently developed downscaling approach and evaluate both methods against independent SIF measurements from Orbiting Carbon Observatory 2 and 3 (OCO-2/3). SIFnet performs systematically better than the downscaling approach (r = 0.78 for SIFnet, r = 0.72 for downscaling), indicating that it is picking up on key features related to SIF and GPP. Examination of the feature importance in the neural network indicates a few key parameters and the spatial regions these parameters matter. Namely, the CNN finds low resolution SIF data to be the most significant parameter with the NIRv vegetation index as the second most important parameter. NIRv consistently outperforms the recently proposed kNDVI vegetation index. Advantages and limitations of SIFnet are investigated and presented through a series of case studies across the United States. SIFnet represents a robust method to infer continuous, high spatial resolution SIF data.</p

    Evaluation of soil moisture downscaling using a simple thermal-based proxy - the REMEDHUS network (Spain) example

    No full text
    Soil moisture retrieved from satellite microwave remote sensing normally has spatial resolution on the order of tens of kilometers, which are too coarse for many regional hydrological applications such as agriculture monitoring and drought prediction. Therefore, various downscaling methods have been proposed to enhance the spatial resolution of satellite soil moisture products. The aim of this study is to investigate the validity and robustness of the simple vegetation temperature condition index (VTCI) downscaling scheme over a dense soil moisture observational network (REMEDHUS) in Spain. First, the optimized VTCI was determined through sensitivity analyses of VTCI to surface temperature, vegetation index, cloud, topography, and land cover heterogeneity, using data from Moderate Resolution Imaging Spectroradiometer∼(MODIS) and MSG SEVIRI (METEOSAT Second Generation-Spinning Enhanced Visible and Infrared Imager). Then the downscaling scheme was applied to improve the spatial resolution of the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative (ESA CCI) soil moisture, which is a merged product based on both active and passive microwave observations. The results from direct validation against soil moisture observations, spatial pattern comparison, as well as seasonal and land use analyses show that the downscaling method can significantly improve the spatial details of CCI soil moisture while maintaining the accuracy of CCI soil moisture. The accuracy level is comparable to other downscaling methods that were also validated against the REMEDHUS network. Furthermore, slightly better performance of MSG SEVIRI over MODIS was observed, which suggests the high potential of applying a geostationary satellite for downscaling soil moisture in the future. Overall, considering the simplicity, limited data requirements and comparable accuracy level to other complex methods, the VTCI downscaling method can facilitate relevant hydrological applications that require high spatial and temporal resolution soil moisture. © 2015 Author(s)

    Modeling the impact of climate change and land use change scenarios on soil erosion at the Minab Dam Watershed

    Get PDF
    Climate and land use change can influence susceptibility to erosion and consequently land degradation. The aim of this study was to investigate in the baseline and a future period, the land use and climate change effects on soil erosion at an important dam watershed occupying a strategic position on the narrow Strait of Hormuz. The future climate change at the study area was inferred using statistical downscaling and validated by the Canadian earth system model (CanESM2). The future land use change was also simulated using the Markov chain and artificial neural network, and the Revised Universal Soil Loss Equation was adopted to estimate soil loss under climate and land use change scenarios. Results show that rainfall erosivity (R factor) will increase under all Representative Concentration Pathway (RCP) scenarios. The highest amount of R was 40.6 MJ mm ha(-1) h(-1)y(-1) in 2030 under RPC 2.6. Future land use/land cover showed rangelands turning into agricultural lands, vegetation cover degradation and an increased soil cover among others. The change of C and R factors represented most of the increase of soil erosion and sediment production in the study area during the future period. The highest erosion during the future period was predicted to reach 14.5 t ha(-1) y(-1), which will generate 5.52 t ha(-1) y(-1) sediment. The difference between estimated and observed sediment was 1.42 t ha(-1) year(-1) at the baseline period. Among the soil erosion factors, soil cover (C factor) is the one that watershed managers could influence most in order to reduce soil loss and alleviate the negative effects of climate change.FCT-Foundation for Science and Technology - PTDC/GES-URB/31928/2017; FEDER ALG-01-0247-FEDER-037303info:eu-repo/semantics/publishedVersio

    ICCAPサマリ —プロジェクトの枠組み、成果、および示唆—

    Get PDF

    An Integrative Information Aqueduct to Close the Gaps between Satellite Observation of Water Cycle and Local Sustainable Management of Water Resources

    Get PDF
    [EN] The past decades have seen rapid advancements in space-based monitoring of essential water cycle variables, providing products related to precipitation, evapotranspiration, and soil moisture, often at tens of kilometer scales. Whilst these data effectively characterize water cycle variability at regional to global scales, they are less suitable for sustainable management of local water resources, which needs detailed information to represent the spatial heterogeneity of soil and vegetation. The following questions are critical to effectively exploit information from remotely sensed and in situ Earth observations (EOs): How to downscale the global water cycle products to the local scale using multiple sources and scales of EO data? How to explore and apply the downscaled information at the management level for a better understanding of soil-water-vegetation-energy processes? How can such fine-scale information be used to improve the management of soil and water resources? An integrative information flow (i.e., iAqueduct theoretical framework) is developed to close the gaps between satellite water cycle products and local information necessary for sustainable management of water resources. The integrated iAqueduct framework aims to address the abovementioned scientific questions by combining medium-resolution (10 m-1 km) Copernicus satellite data with high-resolution (cm) unmanned aerial system (UAS) data, in situ observations, analytical- and physical-based models, as well as big-data analytics with machine learning algorithms. This paper provides a general overview of the iAqueduct theoretical framework and introduces some preliminary results.The authors would like to thank the European Commission and Netherlands Organisation for Scientific Research (NWO) for funding, in the frame of the collaborative international consortium (iAqueduct) financed under the 2018 Joint call of the Water Works 2017 ERA-NET Cofund. This ERA-NET is an integral part of the activities developed by the Water JPI (Project number: ENWWW.2018.5); the EC and the Swedish Research Council for Sustainable Development (FORMAS, under grant 2018-02787); Contributions of B. Szabo was supported by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences (grant no. BO/00088/18/4).Su, Z.; Zeng, Y.; Romano, N.; Manfreda, S.; Francés, F.; Ben Dor, E.; Szabó, B.... (2020). An Integrative Information Aqueduct to Close the Gaps between Satellite Observation of Water Cycle and Local Sustainable Management of Water Resources. Water. 12(5):1-36. https://doi.org/10.3390/w12051495S13612
    corecore