251,032 research outputs found

    Developing digital literacy in construction management education: a design thinking led approach

    Get PDF
    Alongside the digital innovations in AEC (Architectural, Engineering and Construction) practice, are calls for a new type of digital literacy, including a new information-based literacy informed by creativity, critical analysis and the theoretical and practical knowledge of the construction profession. This paper explores the role of design thinking and the promotion of abductive problem situations when developing digital literacies in construction education. The impacts of advanced digital modelling technologies on construction management practices and education are investigated before an examination of design thinking, the role of abductive reasoning and the rise of normative models of design thinking workflows. The paper then explores the role that design thinking can play in the development of new digital literacies in contemporary construction studies. A three-part framework for the implementation of a design thinking approach to construction is presented. The paper closes with a discussion of the importance of models of design thinking for learning and knowledge production, emphasising how construction management education can benefit from them

    Engaging the 'Xbox generation of learners' in Higher Education

    Get PDF
    The research project identifies examples of technology used to empower learning of Secondary school pupils that could be used to inform students’ engagement in learning with technology in the Higher Education sector. Research was carried out in five partnership Secondary schools and one associate Secondary school to investigate how pupils learn with technology in lessons and to identify the pedagogy underpinning such learning. Data was collected through individual interviews with pupils, group interviews with members of the schools’ councils, lesson observations, interviews with teachers, pupil surveys, teacher surveys, and a case study of a learning event. In addition, data was collected on students’ learning with technology at the university through group interviews with students and student surveys in the School of Education and Professional Development, and through surveys completed by students across various university departments. University tutors, researchers, academic staff, learning technology advisers, and cross sector partners from the local authority participated in focus group interviews on the challenges facing Higher Education in engaging new generations of students, who have grown up in the digital age, in successful scholarly learning

    Rich environments for active learning: a definition

    Get PDF
    Rich Environments for Active Learning, or REALs, are comprehensive instructional systems that evolve from and are consistent with constructivist philosophies and theories. To embody a constructivist view of learning, REALs: promote study and investigation within authentic contexts; encourage the growth of student responsibility, initiative, decision making, and intentional learning; cultivate collaboration among students and teachers; utilize dynamic, interdisciplinary, generative learning activities that promote higher-order thinking processes to help students develop rich and complex knowledge structures; and assess student progress in content and learning-to-learn within authentic contexts using realistic tasks and performances. REALs provide learning activities that engage students in a continuous collaborative process of building and reshaping understanding as a natural consequence of their experiences and interactions within learning environments that authentically reflect the world around them. In this way, REALs are a response to educational practices that promote the development of inert knowledge, such as conventional teacher-to-student knowledge-transfer activities. In this article, we describe and organize the shared elements of REALs, including the theoretical foundations and instructional strategies to provide a common ground for discussion. We compare existing assumptions underlying education with new assumptions that promote problem-solving and higher-level thinking. Next, we examine the theoretical foundation that supports these new assumptions. Finally, we describe how REALs promote these new assumptions within a constructivist framework, defining each REAL attribute and providing supporting examples of REAL strategies in action

    Development and evaluation of a web-based learning system based on learning object design and generative learning to improve higher-order thinking skills and learning

    Get PDF
    This research aims to design, develop and evaluate the effectiveness of a Webbased learning system prototype called Generative Object Oriented Design (GOOD) learning system. Result from the preliminary study conducted showed most of the students were at lower order thinking skills (LOTS) compared to higher order thinking skills (HOTS) based on Bloom’s Taxonomy. Based on such concern, GOOD learning system was designed and developed based on learning object design and generative learning to improve HOTS and learning. A conceptual model design of GOOD learning system, called Generative Learning Object Organizer and Thinking Tasks (GLOOTT) model, has been proposed from the theoretical framework of this research. The topic selected for this research was Computer System (CS) which focused on the hardware concepts from the first year Diploma of Computer Science subjects. GOOD learning system acts as a mindtool to improve HOTS and learning in CS. A pre-experimental research design of one group pretest and posttest was used in this research. The samples of this research were 30 students and 12 lecturers. Data was collected from the pretest, posttest, portfolio, interview and Web-based learning system evaluation form. The paired-samples T test analysis was used to analyze the achievement of the pretest and posttest and the result showed that there was significance difference between the mean scores of pretest and posttest at the significant level a = 0.05 (p=0.000). In addition, the paired-samples T test analysis of the cognitive operations from Bloom’s Taxonomy showed that there was significance difference for each of the cognitive operation of the students before and after using GOOD learning system. Results from the study showed improvement of HOTS and learning among the students. Besides, analysis of portfolio showed that the students engaged HOTS during the use of the system. Most of the students and lecturers gave positive comments about the effectiveness of the system in improving HOTS and learning in CS. From the findings in this research, GOOD learning system has the potential to improve students’ HOTS and learning

    Computational Thinking Integration into Middle Grades Science Classrooms: Strategies for Meeting the Challenges

    Get PDF
    This paper reports findings from the efforts of a university-based research team as they worked with middle school educators within formal school structures to infuse computer science principles and computational thinking practices. Despite the need to integrate these skills within regular classroom practices to allow all students the opportunity to learn these essential 21st Century skills, prior practice has been to offer these learning experiences outside of mainstream curricula where only a subset of students have access. We have sought to leverage elements of the research-practice partnership framework to achieve our project objectives of integrating computer science and computational thinking within middle science classrooms. Utilizing a qualitative approach to inquiry, we present narratives from three case schools, report on themes across work sites, and share recommendations to guide other practitioners and researchers who are looking to engage in technology-related initiatives to impact the lives of middle grades students

    Innovation 2.0: Grantmaking to Transform America's Education Systems

    Get PDF
    As social and technological forces reshape the environment, the educational landscape is being similarly transfigured as parents, employers, policymakers and students grow impatient with incremental efforts to reform a broken system. Too often such efforts have proven both slow and inadequate to the evolving needs of learners: Innovations have been inequitably distributed, promising solutions have been difficult to implement at scale. Yet the signs of widespread change are real, and there is little doubt that transformation has begun

    Integrating Technology With Student-Centered Learning

    Get PDF
    Reviews research on technology's role in personalizing learning, its integration into curriculum-based and school- or district-wide initiatives, and the potential of emerging digital technologies to expand student-centered learning. Outlines implications

    Harnessing Technology: new modes of technology-enhanced learning: opportunities and challenges

    Get PDF
    A report commissioned by Becta to explore the potential impact on education, staff and learners of new modes of technology enhanced learning, envisaged as becoming available in subsequent years. A generative framework, developed by the researchers is described, which was used as an analytical tool to relate the possibilities of the technology described to learning and teaching activities. This report is part of the curriculum and pedagogy strand of Becta's programme of managed research in support of the development of Harnessing Technology: Next Generation Learning 2008-14. A system-wide strategy for technology in education and skills. Between April 2008 and March 2009, the project carried out research, in three iterative phases, into the future of learning with technology. The research has drawn from, and aims to inform, all UK education sectors
    corecore