4,012 research outputs found

    Automatic Reconstruction of Parametric, Volumetric Building Models from 3D Point Clouds

    Get PDF
    Planning, construction, modification, and analysis of buildings requires means of representing a building's physical structure and related semantics in a meaningful way. With the rise of novel technologies and increasing requirements in the architecture, engineering and construction (AEC) domain, two general concepts for representing buildings have gained particular attention in recent years. First, the concept of Building Information Modeling (BIM) is increasingly used as a modern means for representing and managing a building's as-planned state digitally, including not only a geometric model but also various additional semantic properties. Second, point cloud measurements are now widely used for capturing a building's as-built condition by means of laser scanning techniques. A particular challenge and topic of current research are methods for combining the strengths of both point cloud measurements and Building Information Modeling concepts to quickly obtain accurate building models from measured data. In this thesis, we present our recent approaches to tackle the intermeshed challenges of automated indoor point cloud interpretation using targeted segmentation methods, and the automatic reconstruction of high-level, parametric and volumetric building models as the basis for further usage in BIM scenarios. In contrast to most reconstruction methods available at the time, we fundamentally base our approaches on BIM principles and standards, and overcome critical limitations of previous approaches in order to reconstruct globally plausible, volumetric, and parametric models.Automatische Rekonstruktion von parametrischen, volumetrischen Gebäudemodellen aus 3D Punktwolken Für die Planung, Konstruktion, Modifikation und Analyse von Gebäuden werden Möglichkeiten zur sinnvollen Repräsentation der physischen Gebäudestruktur sowie dazugehöriger Semantik benötigt. Mit dem Aufkommen neuer Technologien und steigenden Anforderungen im Bereich von Architecture, Engineering and Construction (AEC) haben zwei Konzepte für die Repräsentation von Gebäuden in den letzten Jahren besondere Aufmerksamkeit erlangt. Erstens wird das Konzept des Building Information Modeling (BIM) zunehmend als ein modernes Mittel zur digitalen Abbildung und Verwaltung "As-Planned"-Zustands von Gebäuden verwendet, welches nicht nur ein geometrisches Modell sondern auch verschiedene zusätzliche semantische Eigenschaften beinhaltet. Zweitens werden Punktwolkenmessungen inzwischen häufig zur Aufnahme des "As-Built"-Zustands mittels Laser-Scan-Techniken eingesetzt. Eine besondere Herausforderung und Thema aktueller Forschung ist die Entwicklung von Methoden zur Vereinigung der Stärken von Punktwolken und Konzepten des Building Information Modeling um schnell akkurate Gebäudemodelle aus den gemessenen Daten zu erzeugen. In dieser Dissertation präsentieren wir unsere aktuellen Ansätze um die miteinander verwobenen Herausforderungen anzugehen, Punktwolken mithilfe geeigneter Segmentierungsmethoden automatisiert zu interpretieren, sowie hochwertige, parametrische und volumetrische Gebäudemodelle als Basis für die Verwendung im BIM-Umfeld zu rekonstruieren. Im Gegensatz zu den meisten derzeit verfügbaren Rekonstruktionsverfahren basieren unsere Ansätze grundlegend auf Prinzipien und Standards aus dem BIM-Umfeld und überwinden kritische Einschränkungen bisheriger Ansätze um vollständig plausible, volumetrische und parametrische Modelle zu erzeugen.</p

    Microdrone-Based Indoor Mapping with Graph SLAM

    Get PDF
    Unmanned aerial vehicles offer a safe and fast approach to the production of three-dimensional spatial data on the surrounding space. In this article, we present a low-cost SLAM-based drone for creating exploration maps of building interiors. The focus is on emergency response mapping in inaccessible or potentially dangerous places. For this purpose, we used a quadcopter microdrone equipped with six laser rangefinders (1D scanners) and an optical sensor for mapping and positioning. The employed SLAM is designed to map indoor spaces with planar structures through graph optimization. It performs loop-closure detection and correction to recognize previously visited places, and to correct the accumulated drift over time. The proposed methodology was validated for several indoor environments. We investigated the performance of our drone against a multilayer LiDAR-carrying macrodrone, a vision-aided navigation helmet, and ground truth obtained with a terrestrial laser scanner. The experimental results indicate that our SLAM system is capable of creating quality exploration maps of small indoor spaces, and handling the loop-closure problem. The accumulated drift without loop closure was on average 1.1% (0.35 m) over a 31-m-long acquisition trajectory. Moreover, the comparison results demonstrated that our flying microdrone provided a comparable performance to the multilayer LiDAR-based macrodrone, given the low deviation between the point clouds built by both drones. Approximately 85 % of the cloud-to-cloud distances were less than 10 cm

    Mapping for Indoor Walking Environment from Point Clouds by Using Mobile Mapping Systems

    Get PDF
    Walkability is one of the issues to be addressed in the planning of smart urban cities. Although, there is a substantial amount of studies on outdoor walking pedestrian, limited study has been done to address indoor walkability. Recently, most of the pedestrians are likely to use indoor route than outdoor route to protect themselves from sun and rain as most of the indoor routes are located on the buildings such as shopping mall and rail transit station. Therefore, it important to collect all the relevant information in the indoor building to addressed the walkability issues. The GeoSLAM ZEB REVO scanner is used for its convenience to access narrow space, busy area and complex building structure. This scanner is portable and easy to handle by the operator as it can be attached on the cart or carry it with backpack. The scanner captures the building geometry and facilities and present it in the form of point cloud. Then necessary information can be extracted from the point cloud using point cloud segmentation method. The end user such as town planner can benefit from the final product to design future building with pedestrian-friendly tool to encourage more people to walk. Therefore, it brings impact to the society by providing the healthy lifestyle in addition to reducing the use of private vehicle on the road

    Renovation or Redevelopment: The Case of Smart Decision-Support in Aging Buildings

    Get PDF
    In Germany, as in many developed countries, over 60% of buildings were constructed before 1978, where most are in critical condition, requiring either demolition with plans for redevelopment or renovation and rehabilitation. Given the urgency of climate action and relevant sustainable development goals set by the United Nations, more attention must be shifted toward the various sustainability aspects when deciding on a strategy for the renovation or redevelopment of existing buildings. To this end, this study focused on developing a smart decision support framework for aging buildings based on lifecycle sustainability considerations. The framework integrated digital technological advancements, such as building information modeling (BIM), point clouds processing with field information modeling (FIM)®, and structural optimization, together with lifecycle assessment to evaluate and rate the environmental impact of different solutions. Three sustainability aspects, namely, cost, energy consumption, and carbon emissions, were quantitatively evaluated and compared in two scenarios, namely, renovation, and demolition or deconstruction combined with redevelopment. A real building constructed in 1961 was the subject of the experiments to validate the framework. The result outlined the limitations and advantages of each method in terms of economics and sustainability. It was further observed that optimizing the building design with the goal of reducing embodied energy and carbon in compliance with modern energy standards was crucial to improving overall energy performance. This work demonstrated that the BIM-based framework developed to assess the environmental impact of rehabilitation work in aging buildings can provide effective ratings to guide decision-making in real-world projects
    • …
    corecore