199 research outputs found

    Generation of Adversarial Examples to Prevent Misclassification of Deep Neural Network based Condition Monitoring Systems for Cyber-Physical Production Systems

    No full text
    Specht F, Otto J, Niggemann O, Hammer B. Generation of Adversarial Examples to Prevent Misclassification of Deep Neural Network based Condition Monitoring Systems for Cyber-Physical Production Systems. In: 2018 IEEE 16th International Conference on Industrial Informatics (INDIN). IEEE; 2018: 760-765.Deep neural network based condition monitoring systems are used to detect system failures of cyber-physical production systems. However, a vulnerability of deep neural networks are adversarial examples. They are manipulated inputs, e.g. process data, with the ability to mislead a deep neural network into misclassification. Adversarial example attacks can manipulate the physical production process of a cyber-physical production system without being recognized by the condition monitoring system. Manipulation of the physical process poses a serious threat for production systems and employees. This paper introduces CyberProtect, a novel approach to prevent misclassification caused by adversarial example attacks. CyberProtect generates adversarial examples and uses them to retrain deep neural networks. This results in a hardened deep neural network with a significant reduced misclassification rate. The proposed countermeasure increases the classification rate from 20% to 82%, as proved by empirical results

    Machine Learning for Cyber Physical Systems

    Get PDF
    This open access proceedings presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains selected papers from the fifth international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Berlin, March 12-13, 2020. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments

    Machine Learning Interpretability in Malware Detection

    Get PDF
    The ever increasing processing power of modern computers, as well as the increased availability of large and complex data sets, has led to an explosion in machine learning research. This has led to increasingly complex machine learning algorithms, such as Convolutional Neural Networks, with increasingly complex applications, such as malware detection. Recently, malware authors have become increasingly successful in bypassing traditional malware detection methods, partly due to advanced evasion techniques such as obfuscation and server-side polymorphism. Further, new programming paradigms such as fileless malware, that is malware that exist only in the main memory (RAM) of the infected host, add to the challenges faced with modern day malware detection. This has led security specialists to turn to machine learning to augment their malware detection systems. However, with this new technology comes new challenges. One of these challenges is the need for interpretability in machine learning. Machine learning interpretability is the process of giving explanations of a machine learning model\u27s predictions to humans. Rather than trying to understand everything that is learnt by the model, it is an attempt to find intuitive explanations which are simple enough and provide relevant information for downstream tasks. Cybersecurity analysts always prefer interpretable solutions because of the need to fine tune these solutions. If malware analysts can\u27t interpret the reason behind a misclassification, they will not accept the non-interpretable or black box detector. In this thesis, we provide an overview of machine learning and discuss its roll in cyber security, the challenges it faces, and potential improvements to current approaches in the literature. We showcase its necessity as a result of new computing paradigms by implementing a proof of concept fileless malware with JavaScript. We then present techniques for interpreting machine learning based detectors which leverage n-gram analysis and put forward a novel and fully interpretable approach for malware detection which uses convolutional neural networks. We also define a novel approach for evaluating the robustness of a machine learning based detector

    Generative Methods, Meta-learning, and Meta-heuristics for Robust Cyber Defense

    Get PDF
    Cyberspace is the digital communications network that supports the internet of battlefield things (IoBT), the model by which defense-centric sensors, computers, actuators and humans are digitally connected. A secure IoBT infrastructure facilitates real time implementation of the observe, orient, decide, act (OODA) loop across distributed subsystems. Successful hacking efforts by cyber criminals and strategic adversaries suggest that cyber systems such as the IoBT are not secure. Three lines of effort demonstrate a path towards a more robust IoBT. First, a baseline data set of enterprise cyber network traffic was collected and modelled with generative methods allowing the generation of realistic, synthetic cyber data. Next, adversarial examples of cyber packets were algorithmically crafted to fool network intrusion detection systems while maintaining packet functionality. Finally, a framework is presented that uses meta-learning to combine the predictive power of various weak models. This resulted in a meta-model that outperforms all baseline classifiers with respect to overall accuracy of packets, and adversarial example detection rate. The National Defense Strategy underscores cybersecurity as an imperative to defend the homeland and maintain a military advantage in the information age. This research provides both academic perspective and applied techniques to to further the cybersecurity posture of the Department of Defense into the information age

    State of the art in privacy preservation in video data

    Full text link
    Active and Assisted Living (AAL) technologies and services are a possible solution to address the crucial challenges regarding health and social care resulting from demographic changes and current economic conditions. AAL systems aim to improve quality of life and support independent and healthy living of older and frail people. AAL monitoring systems are composed of networks of sensors (worn by the users or embedded in their environment) processing elements and actuators that analyse the environment and its occupants to extract knowledge and to detect events, such as anomalous behaviours, launch alarms to tele-care centres, or support activities of daily living, among others. Therefore, innovation in AAL can address healthcare and social demands while generating economic opportunities. Recently, there has been far-reaching advancements in the development of video-based devices with improved processing capabilities, heightened quality, wireless data transfer, and increased interoperability with Internet of Things (IoT) devices. Computer vision gives the possibility to monitor an environment and report on visual information, which is commonly the most straightforward and human-like way of describing an event, a person, an object, interactions and actions. Therefore, cameras can offer more intelligent solutions for AAL but they may be considered intrusive by some end users. The General Data Protection Regulation (GDPR) establishes the obligation for technologies to meet the principles of data protection by design and by default. More specifically, Article 25 of the GDPR requires that organizations must "implement appropriate technical and organizational measures [...] which are designed to implement data protection principles [...] , in an effective manner and to integrate the necessary safeguards into [data] processing.” Thus, AAL solutions must consider privacy-by-design methodologies in order to protect the fundamental rights of those being monitored. Different methods have been proposed in the latest years to preserve visual privacy for identity protection. However, in many AAL applications, where mostly only one person would be present (e.g. an older person living alone), user identification might not be an issue; concerns are more related to the disclosure of appearance (e.g. if the person is dressed/naked) and behaviour, what we called bodily privacy. Visual obfuscation techniques, such as image filters, facial de-identification, body abstraction, and gait anonymization, can be employed to protect privacy and agreed upon by the users ensuring they feel comfortable. Moreover, it is difficult to ensure a high level of security and privacy during the transmission of video data. If data is transmitted over several network domains using different transmission technologies and protocols, and finally processed at a remote location and stored on a server in a data center, it becomes demanding to implement and guarantee the highest level of protection over the entire transmission and storage system and for the whole lifetime of the data. The development of video technologies, increase in data rates and processing speeds, wide use of the Internet and cloud computing as well as highly efficient video compression methods have made video encryption even more challenging. Consequently, efficient and robust encryption of multimedia data together with using efficient compression methods are important prerequisites in achieving secure and efficient video transmission and storage.This publication is based upon work from COST Action GoodBrother - Network on Privacy-Aware Audio- and Video-Based Applications for Active and Assisted Living (CA19121), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation. www.cost.e

    Cyber-Physical Threat Intelligence for Critical Infrastructures Security

    Get PDF
    Modern critical infrastructures can be considered as large scale Cyber Physical Systems (CPS). Therefore, when designing, implementing, and operating systems for Critical Infrastructure Protection (CIP), the boundaries between physical security and cybersecurity are blurred. Emerging systems for Critical Infrastructures Security and Protection must therefore consider integrated approaches that emphasize the interplay between cybersecurity and physical security techniques. Hence, there is a need for a new type of integrated security intelligence i.e., Cyber-Physical Threat Intelligence (CPTI). This book presents novel solutions for integrated Cyber-Physical Threat Intelligence for infrastructures in various sectors, such as Industrial Sites and Plants, Air Transport, Gas, Healthcare, and Finance. The solutions rely on novel methods and technologies, such as integrated modelling for cyber-physical systems, novel reliance indicators, and data driven approaches including BigData analytics and Artificial Intelligence (AI). Some of the presented approaches are sector agnostic i.e., applicable to different sectors with a fair customization effort. Nevertheless, the book presents also peculiar challenges of specific sectors and how they can be addressed. The presented solutions consider the European policy context for Security, Cyber security, and Critical Infrastructure protection, as laid out by the European Commission (EC) to support its Member States to protect and ensure the resilience of their critical infrastructures. Most of the co-authors and contributors are from European Research and Technology Organizations, as well as from European Critical Infrastructure Operators. Hence, the presented solutions respect the European approach to CIP, as reflected in the pillars of the European policy framework. The latter includes for example the Directive on security of network and information systems (NIS Directive), the Directive on protecting European Critical Infrastructures, the General Data Protection Regulation (GDPR), and the Cybersecurity Act Regulation. The sector specific solutions that are described in the book have been developed and validated in the scope of several European Commission (EC) co-funded projects on Critical Infrastructure Protection (CIP), which focus on the listed sectors. Overall, the book illustrates a rich set of systems, technologies, and applications that critical infrastructure operators could consult to shape their future strategies. It also provides a catalogue of CPTI case studies in different sectors, which could be useful for security consultants and practitioners as well
    corecore