19,647 research outputs found

    Group Leaders Optimization Algorithm

    Full text link
    We present a new global optimization algorithm in which the influence of the leaders in social groups is used as an inspiration for the evolutionary technique which is designed into a group architecture. To demonstrate the efficiency of the method, a standard suite of single and multidimensional optimization functions along with the energies and the geometric structures of Lennard-Jones clusters are given as well as the application of the algorithm on quantum circuit design problems. We show that as an improvement over previous methods, the algorithm scales as N^2.5 for the Lennard-Jones clusters of N-particles. In addition, an efficient circuit design is shown for two qubit Grover search algorithm which is a quantum algorithm providing quadratic speed-up over the classical counterpart

    Combining biochemical network motifs within an ARN-agent control system.

    Get PDF
    The Artificial Reaction Network (ARN) is an Artificial Chemistry representation inspired by cell signaling networks. The ARN has previously been applied to the simulation of the chemotaxis pathway of Escherichia coli and to the control of limbed robots. In this paper we discuss the design of an ARN control system composed of a combination of network motifs found in actual biochemical networks. Using this control system we create multiple cell-like autonomous agents capable of coordinating all aspects of their behavior, recognizing environmental patterns and communicating with other agent's stigmergically. The agents are applied to simulate two phases of the life cycle of Dictyostelium discoideum: vegetative and aggregation phase including the transition. The results of the simulation show that the ARN is well suited for construction of biochemical regulatory networks. Furthermore, it is a powerful tool for modeling multi agent systems such as a population of amoebae or bacterial colony

    Coupling of hard dimers to dynamical lattices via random tensors

    Full text link
    We study hard dimers on dynamical lattices in arbitrary dimensions using a random tensor model. The set of lattices corresponds to triangulations of the d-sphere and is selected by the large N limit. For small enough dimer activities, the critical behavior of the continuum limit is the one of pure random lattices. We find a negative critical activity where the universality class is changed as dimers become critical, in a very similar way hard dimers exhibit a Yang-Lee singularity on planar dynamical graphs. Critical exponents are calculated exactly. An alternative description as a system of `color-sensitive hard-core dimers' on random branched polymers is provided.Comment: 12 page

    Computational aspects of cellular intelligence and their role in artificial intelligence.

    Get PDF
    The work presented in this thesis is concerned with an exploration of the computational aspects of the primitive intelligence associated with single-celled organisms. The main aim is to explore this Cellular Intelligence and its role within Artificial Intelligence. The findings of an extensive literature search into the biological characteristics, properties and mechanisms associated with Cellular Intelligence, its underlying machinery - Cell Signalling Networks and the existing computational methods used to capture it are reported. The results of this search are then used to fashion the development of a versatile new connectionist representation, termed the Artificial Reaction Network (ARN). The ARN belongs to the branch of Artificial Life known as Artificial Chemistry and has properties in common with both Artificial Intelligence and Systems Biology techniques, including: Artificial Neural Networks, Artificial Biochemical Networks, Gene Regulatory Networks, Random Boolean Networks, Petri Nets, and S-Systems. The thesis outlines the following original work: The ARN is used to model the chemotaxis pathway of Escherichia coli and is shown to capture emergent characteristics associated with this organism and Cellular Intelligence more generally. The computational properties of the ARN and its applications in robotic control are explored by combining functional motifs found in biochemical network to create temporal changing waveforms which control the gaits of limbed robots. This system is then extended into a complete control system by combining pattern recognition with limb control in a single ARN. The results show that the ARN can offer increased flexibility over existing methods. Multiple distributed cell-like ARN based agents termed Cytobots are created. These are first used to simulate aggregating cells based on the slime mould Dictyostelium discoideum. The Cytobots are shown to capture emergent behaviour arising from multiple stigmergic interactions. Applications of Cytobots within swarm robotics are investigated by applying them to benchmark search problems and to the task of cleaning up a simulated oil spill. The results are compared to those of established optimization algorithms using similar cell inspired strategies, and to other robotic agent strategies. Consideration is given to the advantages and disadvantages of the technique and suggestions are made for future work in the area. The report concludes that the Artificial Reaction Network is a versatile and powerful technique which has application in both simulation of chemical systems, and in robotic control, where it can offer a higher degree of flexibility and computational efficiency than benchmark alternatives. Furthermore, it provides a tool which may possibly throw further light on the origins and limitations of the primitive intelligence associated with cells

    Robots that can adapt like animals

    Get PDF
    As robots leave the controlled environments of factories to autonomously function in more complex, natural environments, they will have to respond to the inevitable fact that they will become damaged. However, while animals can quickly adapt to a wide variety of injuries, current robots cannot "think outside the box" to find a compensatory behavior when damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. Here we introduce an intelligent trial and error algorithm that allows robots to adapt to damage in less than two minutes, without requiring self-diagnosis or pre-specified contingency plans. Before deployment, a robot exploits a novel algorithm to create a detailed map of the space of high-performing behaviors: This map represents the robot's intuitions about what behaviors it can perform and their value. If the robot is damaged, it uses these intuitions to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a compensatory behavior that works in spite of the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new technique will enable more robust, effective, autonomous robots, and suggests principles that animals may use to adapt to injury

    Evolutionary Algorithms for Reinforcement Learning

    Full text link
    There are two distinct approaches to solving reinforcement learning problems, namely, searching in value function space and searching in policy space. Temporal difference methods and evolutionary algorithms are well-known examples of these approaches. Kaelbling, Littman and Moore recently provided an informative survey of temporal difference methods. This article focuses on the application of evolutionary algorithms to the reinforcement learning problem, emphasizing alternative policy representations, credit assignment methods, and problem-specific genetic operators. Strengths and weaknesses of the evolutionary approach to reinforcement learning are presented, along with a survey of representative applications
    corecore