146 research outputs found

    Modeling Operator Behavior in the Safety Analysis of Collaborative Robotic Applications

    Get PDF
    Human-Robot Collaboration is increasingly prominent in peo- ple's lives and in the industrial domain, for example in manufacturing applications. The close proximity and frequent physical contacts between humans and robots in such applications make guaranteeing suitable levels of safety for human operators of the utmost importance. Formal veri- cation techniques can help in this regard through the exhaustive explo- ration of system models, which can identify unwanted situations early in the development process. This work extends our SAFER-HRC method- ology with a rich non-deterministic formal model of operator behaviors, which captures the hazardous situations resulting from human errors. The model allows safety engineers to rene their designs until all plausi- ble erroneous behaviors are considered and mitigated

    Evaluating humanhuman communication protocols with miscommunication generation and model checking

    Get PDF
    Abstract. Human-human communication is critical to safe operations in domains such as air transportation where airlines develop and train pilots on communication procedures with the goal to ensure that they check that verbal air traffic clearances are correctly heard and executed. Such communication protocols should be designed to be robust to miscommunication. However, they can fail in ways unanticipated by designers. In this work, we present a method for modeling human-human communication protocols using the Enhanced Operator Function Model with Communications (EOFMC), a task analytic modeling formalism that can be interpreted by a model checker. We describe how miscommunications can be generated from instantiated EOFMC models of human-human communication protocols. Using an air transportation example, we show how model checking can be used to evaluate if a given protocol will ensure successful communication. Avenues of future research are explored

    Picture-based task definition and parameterization support system

    Get PDF
    Applications for task definition and automation are valuable tools to automated software engineering area. This paper describes a solution to support a parameterized task definition using screen capture images. The approach allows the capture of a sequence of actions defined by the user. Through the captured sequence of actions, the approach assists in the implementation of task automation processes. Based on picture-driven computing the proposed tool aims to reduce the challenges that users face while trying to define tasks. This approach provides also a foundation for the creation of picture-driven based tests for interactive systems, enabling to test any interactive system but also allowing for the definition, parameterization and execution of tests that might involve the use of several independent interactive systems.info:eu-repo/semantics/acceptedVersio

    Using PVS to support the analysis of distributed cognition systems

    Get PDF
    The rigorous analysis of socio-technical systems is challenging, because people are inherent parts of the system, together with devices and artefacts. In this paper, we report on the use of PVS as a way of analysing such systems in terms of distributed cognition. Distributed cognition is a conceptual framework that allows us to derive insights about plausible user trajectories in socio-technical systems by exploring what information in the environment provides resources for user action, but its application has traditionally required substantial craft skill. DiCoT adds structure and method to the analysis of socio-technical systems from a distributed cognition perspective. In this work, we demonstrate how PVS can be used with DiCoT to conduct a systematic analysis. We illustrate how a relatively simple use of PVS can help a field researcher to (i) externalise assumptions and facts, (ii) verify the consistency of the logical argument framed in the descriptions, (iii) help uncover latent situations that may warrant further investigation, and (iv) verify conjectures about potential hazards linked to the observed use of information resources. Evidence is also provided that formal methods and empirical studies are not alternative approaches for studying a socio-technical system, but that they can complement and refine each other. The combined use of PVS and DiCoT is illustrated through a case study concerning a real-world emergency medical dispatch system

    Interaction modeling based on human behavior classification

    Get PDF
    The variety of human behaviors makes user-product interaction difficult to manage and foresee, especially concerning users running into problems. This research considers several interaction problems and identifies recurring behaviors. Then, it highlights the users, products and environments' aspects corresponding to each of these behaviors. This makes possible foreseeing the behavior of specific users who run into problems while interacting with specific products in specific environments. The results are used to upgrade an existing user-product interaction modeling approach in order to make it able to suggest better-focused product improvements to designers as well as alternative problem solving to different users

    Vérification de Modèle Probabiliste pour la Reconnaissance d'Activité Humaine dans les Jeux Sérieux Médicaux.

    Get PDF
    International audienceHuman activity recognition plays an important role especially in medical applications. This paper proposes a formal approach to model such activities, taking into account possible variations in human behavior. Starting from an activity description enriched with event occurrence probabilities, we translate it into a corresponding formal model based on discrete-time Markov chains (DTMCs). We use the PRISM framework and its model checking facilities to express and check interesting temporal logic properties concerning the dynamic evolution of activities. We illustrate our approach with the models of several serious games used by clinicians to monitor Alzheimer patients. We expect that such a modeling approach could provide new indications for interpreting patient performances. This paper addresses the definition of patient's models for three serious games and the suitability of this approach to check behavioral properties of medical interest. Indeed, this is a mandatory first step before clinical studies with patients playing these games. Our goal is to provide a new tool for doctors to evaluate patients.La reconnaissance d'activités humaines joue un rôle important en particulier dans les applications médicales. Cet article propose une approche formelle pour modéliser ces activités en prenant en compte les variations possibles du comportement humain. À partir d'une description de l'activité dans laquelle les probabilité associées aux évènements sont données, nous conceptualisons un modèle formel fondé sur les chaînes de Markov à temps discret. Nous utilisons l'environnement PRISM avec son système de vérification de modèles pour exprimer en logique temporelle et vérifier des propriétés intéressantes concernant l'évolution dynamique des activités. Nous illustrons notre approche avec plusieurs jeux sérieux utilisés par les cliniciens pour évaluer les patients Alzheimer. Nous espérons que cette approche de modélisation apporte de nouvelles indications dans l'interprétation des performances des patients. Cet article se concentre sur la définition des modèles de patients pour trois jeux sérieux ainsi que sur la pertinence d'une telle approche formelle pour vérifier des propriétés sur les comportements de patients ayant un intérêt médical. Il s'agit d'une étape préliminaire obligatoire avant de passer à une étude clinique où de vrais patients joueront à ces jeux. Notre but est de proposer un nouvel outil aux médecins pour évaluer leurs patients

    Designing and Optimizing a Healthcare Kiosk for the Community

    Get PDF
    Investigating new ways to deliver care, such as the use of self-service kiosks to collect and monitor signs of wellness, supports healthcare efficiency and inclusivity. Self-service kiosks offer this potential, but there is a need for solutions to meet acceptable standards, e.g., provision of accurate measurements. This study investigates the design and optimization of a prototype healthcare kiosk to collect vital signs measures. The design problem was decomposed, formalized, focused and used to generate multiple solutions. Systematic implementation and evaluation allowed for the optimization of measurement accuracy, first for individuals and then for a population. The optimized solution was tested independently to check the suitability of the methods, and quality of the solution. The process resulted in a reduction of measurement noise and an optimal fit, in terms of the positioning of measurement devices. This guaranteed the accuracy of the solution and provides a general methodology for similar design problems

    Model-Based Usability Analysis of Safety-Critical Systems: A Formal Methods Framework

    Get PDF
    Complex, safety-critical systems are designed with a broad range of automated and configurable components, and usability problems often emerge for the end user during setup, operation, and troubleshooting procedures. Usability evaluations should consider the entire human-device interface including displays, controls, hardware configurations, and user documentation/procedures. To support the analyst, human factors researchers have developed a set of methods and measures for evaluating human-system interface usability, while formal methods researchers have developed a set of model-based technologies that enable mathematical verification of desired system behaviors. At the intersection of these disciplines, an evolving set of model-based frameworks enable highly automated verification of usability early in the design cycle. Models can be abstracted to enable broad coverage of possible problems, while measures can be formally verified to "prove" that the system is usable. Currently, frameworks cover a subset of the target system and user behaviors that must be modeled to ensure usability: procedures, visual displays, user controls, automation, and possible interactions among them. Similarly, verification methodologies focus on a subset of potential usability problems with respect to modeled interactions. This work provides an integrated formal methods framework enabling the holistic modeling and verification of safety-critical system usability. Building toward the framework, a set of five, novel approaches extend the capabilities of extant frameworks in different ways. Each approach is demonstrated in a medical device case study to show how the methods can be employed to identify potential usability problems in existing systems. A formal approach to documentation navigation models an end user navigating through a printed or electronic document and verifies page reachability. A formal approach to procedures in documentation models an end user executing steps as written and aids in identifying problems involving what device components are identified in task descriptions, what system configurations are addressed, and what temporal orderings of procedural steps could be improved. A formal approach to hardware configurability models end-user motor capabilities, relationships among the user and device components in the spatial environment, and opportunities for the user to physically manipulate components. An encoding tool facilitates the modeling process, while a verification methodology aids in ensuring that configurable hardware supports correct end- user actions and prevents incorrect ones. A formal approach to interface understandability models what information is provided to the end user through visual, audible, and haptic sensory channels, including explanations provided in accompanying documentation. An encoding tools facilitates the development of models and specifications, while the verification methodology aids in ensuring that what is displayed on the device is consistent; and, if needed, an explanation of what is displayed is provided in documentation. A formal approach to controlled actuators leverages an existing modeling technique and data collected from other engineering activities to model actuator dynamics mapping to referent data. An encoding tool facilitates model development, and a verification methodology aids in validating the model with respect to source data. Finally, new methodologies are combined within the integrated framework. A model architecture supports the analyst in representing a broad range of interactions among constituent framework models, and a set of ten specifications is developed to enable holistic usability verification. An implementation of the framework is demonstrated within a case study based on a medical device under development. This application shows how the framework could be utilized early in the design of a safety-critical system, without the need for a fully implemented device or a team of human evaluators.Ph.D., Biomedical Science -- Drexel University, 201

    Development and Validation of:a human error management taxonomy in air traffic control

    Get PDF
    • …
    corecore