8,555 research outputs found

    Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation

    Full text link
    In this work we show a general procedure to obtain optimal derivative free iterative methods for nonlinear equations f (x) = 0, applying polynomial interpolation to a generic optimal derivative free iterative method of lower order. Let us consider an optimal method of order q = 2(n-1), v = phi(n)(x), that uses n functional evaluations. Performing a Newton step w = v - f(v)/f'(v) one obtains a method of order 2(n), that is not optimal because it introduces two new functional evaluations. Instead, we approximate the derivative by using a polynomial of degree n that interpolates n+1 already known functional values and keeps the order 2(n). We have applied this idea to Steffensen's method, obtaining a family of optimal derivative free iterative methods of arbitrary high order. We provide different numerical tests, that confirm the theoretical results and compare the new family with other well known family of similar characteristics. (C) 2012 Elsevier Ltd. All rights reserved.This research was supported by Ministerio de Ciencia e Innovacion MTM2011-28636-C02-02 and by Vicerrectorado de Investigacion. Universitat Politecnica de Valencia PAID-06-2010-2285.Cordero Barbero, A.; Hueso Pagoaga, JL.; Martínez Molada, E.; Torregrosa Sánchez, JR. (2013). Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation. Mathematical and Computer Modelling. 57(7-8):1950-1956. https://doi.org/10.1016/j.mcm.2012.01.012S19501956577-

    Analytical Approximation Methods for the Stabilizing Solution of the Hamilton–Jacobi Equation

    Get PDF
    In this paper, two methods for approximating the stabilizing solution of the Hamilton–Jacobi equation are proposed using symplectic geometry and a Hamiltonian perturbation technique as well as stable manifold theory. The first method uses the fact that the Hamiltonian lifted system of an integrable system is also integrable and regards the corresponding Hamiltonian system of the Hamilton–Jacobi equation as an integrable Hamiltonian system with a perturbation caused by control. The second method directly approximates the stable flow of the Hamiltonian systems using a modification of stable manifold theory. Both methods provide analytical approximations of the stable Lagrangian submanifold from which the stabilizing solution is derived. Two examples illustrate the effectiveness of the methods.

    Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems

    Full text link
    [EN] In this paper, we analyze the semilocal convergence of k-steps Newton's method with frozen first derivative in Banach spaces. The method reaches order of convergence k + 1. By imposing only the assumption that the Fr,chet derivative satisfies the Lipschitz continuity, we define appropriate recurrence relations for obtaining the domains of convergence and uniqueness. We also define the accessibility regions for this iterative process in order to guarantee the semilocal convergence and perform a complete study of their efficiency. Our final aim is to apply these theoretical results to solve a special kind of conservative systems.Hernández-Verón, MA.; Martínez Molada, E.; Teruel-Ferragud, C. (2017). Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems. Numerical Algorithms. 76(2):309-331. https://doi.org/10.1007/s11075-016-0255-zS309331762Amat, S., Busquier, S., Bermúdez, C., Plaza, S.: On two families of high order Newton type methods. Appl. Math. Comput. 25, 2209–2217 (2012)Argyros, I.K., Hilout, S., Tabatabai, M.A.: Mathematical Modelling with Applications in Biosciences and Engineering. Nova Publishers, New York (2011)Argyros, I.K., George, S.: A unified local convergence for Jarratt-type methods in Banach space under weak conditions. Thai. J. Math. 13, 165–176 (2015)Argyros, I.K., Hilout, S.: On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013)Argyros, I.K., Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A., Hilout, S.: On the semilocal convergence of efficient Chebyshev–Secant-type methods. J. Comput. Appl. Math. 235, 3195–2206 (2011)Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation. Math. Comput. Mod. 57, 1950–1956 (2013)Ezquerro, J.A., Grau-Sánchez, M., Hernández, M. A., Noguera, M.: Semilocal convergence of secant-like methods for differentiable and nondifferentiable operators equations. J. Math. Anal. Appl. 398(1), 100–112 (2013)Honorato, G., Plaza, S., Romero, N.: Dynamics of a higher-order family of iterative methods. J. Complexity 27(2), 221–229 (2011)Jerome, J.W., Varga, R.S.: Generalizations of Spline Functions and Applications to Nonlinear Boundary Value and Eigenvalue Problems, Theory and Applications of Spline Functions. Academic Press, New York (1969)Kantorovich, L.V., Akilov, G.P.: Functional analysis Pergamon Press. Oxford (1982)Keller, H.B.: Numerical Methods for Two-Point Boundary-Value Problems. Dover Publications, New York (1992)Na, T.Y.: Computational Methods in Engineering Boundary Value Problems. Academic Press, New York (1979)Ortega, J.M.: The Newton-Kantorovich theorem. Amer. Math. Monthly 75, 658–660 (1968)Ostrowski, A.M.: Solutions of Equations in Euclidean and Banach Spaces. Academic Press, New York (1973)Plaza, S., Romero, N.: Attracting cycles for the relaxed Newton’s method. J. Comput. Appl. Math. 235(10), 3238–3244 (2011)Porter, D., Stirling, D.: Integral Equations: A Practical Treatment, From Spectral Theory to Applications. Cambridge University Press, Cambridge (1990)Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall. Englewood Cliffs, New Jersey (1964)Argyros, I.K., George, S.: Extending the applicability of Gauss-Newton method for convex composite optimization on Riemannian manifolds using restricted convergence domains. Journal of Nonlinear Functional Analysis 2016 (2016). Article ID 27Xiao, J.Z., Sun, J., Huang, X.: Approximating common fixed points of asymptotically quasi-nonexpansive mappings by a k+1-step iterative scheme with error terms. J. Comput. Appl. Math 233, 2062–2070 (2010)Qin, X., Dehaish, B.A.B., Cho, S.Y.: Viscosity splitting methods for variational inclusion and fixed point problems in Hilbert spaces. J. Nonlinear Sci. Appl. 9, 2789–2797 (2016

    Study of flutter related computational procedures for minimum weight structural sizing of advanced aircraft, supplemental data

    Get PDF
    Computational aspects of (1) flutter optimization (minimization of structural mass subject to specified flutter requirements), (2) methods for solving the flutter equation, and (3) efficient methods for computing generalized aerodynamic force coefficients in the repetitive analysis environment of computer-aided structural design are discussed. Specific areas included: a two-dimensional Regula Falsi approach to solving the generalized flutter equation; method of incremented flutter analysis and its applications; the use of velocity potential influence coefficients in a five-matrix product formulation of the generalized aerodynamic force coefficients; options for computational operations required to generate generalized aerodynamic force coefficients; theoretical considerations related to optimization with one or more flutter constraints; and expressions for derivatives of flutter-related quantities with respect to design variables

    Spline parameterization based nonlinear trajectory optimization along 4D waypoints

    Get PDF
    Flight trajectory optimization has become an important factor not only to reduce the operational costs (e.g.,, fuel and time related costs) of the airliners but also to reduce the environmental impact (e.g.,, emissions, contrails and noise etc.) caused by the airliners. So far, these factors have been dealt with in the context of 2D and 3D trajectory optimization, which are no longer efficient. Presently, the 4D trajectory optimization is required in order to cope with the current air traffic management (ATM). This study deals with a cubic spline approximation method for solving 4D trajectory optimization problem (TOP). The state vector, its time derivative and control vector are parameterized using cubic spline interpolation (CSI). Consequently, the objective function and constraints are expressed as functions of the value of state and control at the temporal nodes, this representation transforms the TOP into nonlinear programming problem (NLP). The proposed method is successfully applied to the generation of a minimum length optimal trajectories along 4D waypoints, where the method generated smooth 4D optimal trajectories with very accurate results.info:eu-repo/semantics/publishedVersio
    • …
    corecore