1,583 research outputs found

    Requirement analysis and sensor specifications – First version

    Get PDF
    In this first version of the deliverable, we make the following contributions: to design the WEKIT capturing platform and the associated experience capturing API, we use a methodology for system engineering that is relevant for different domains such as: aviation, space, and medical and different professions such as: technicians, astronauts, and medical staff. Furthermore, in the methodology, we explore the system engineering process and how it can be used in the project to support the different work packages and more importantly the different deliverables that will follow the current. Next, we provide a mapping of high level functions or tasks (associated with experience transfer from expert to trainee) to low level functions such as: gaze, voice, video, body posture, hand gestures, bio-signals, fatigue levels, and location of the user in the environment. In addition, we link the low level functions to their associated sensors. Moreover, we provide a brief overview of the state-of-the-art sensors in terms of their technical specifications, possible limitations, standards, and platforms. We outline a set of recommendations pertaining to the sensors that are most relevant for the WEKIT project taking into consideration the environmental, technical and human factors described in other deliverables. We recommend Microsoft Hololens (for Augmented reality glasses), MyndBand and Neurosky chipset (for EEG), Microsoft Kinect and Lumo Lift (for body posture tracking), and Leapmotion, Intel RealSense and Myo armband (for hand gesture tracking). For eye tracking, an existing eye-tracking system can be customised to complement the augmented reality glasses, and built-in microphone of the augmented reality glasses can capture the expert’s voice. We propose a modular approach for the design of the WEKIT experience capturing system, and recommend that the capturing system should have sufficient storage or transmission capabilities. Finally, we highlight common issues associated with the use of different sensors. We consider that the set of recommendations can be useful for the design and integration of the WEKIT capturing platform and the WEKIT experience capturing API to expedite the time required to select the combination of sensors which will be used in the first prototype.WEKI

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Analyzing Whole-Body Pose Transitions in Multi-Contact Motions

    Full text link
    When executing whole-body motions, humans are able to use a large variety of support poses which not only utilize the feet, but also hands, knees and elbows to enhance stability. While there are many works analyzing the transitions involved in walking, very few works analyze human motion where more complex supports occur. In this work, we analyze complex support pose transitions in human motion involving locomotion and manipulation tasks (loco-manipulation). We have applied a method for the detection of human support contacts from motion capture data to a large-scale dataset of loco-manipulation motions involving multi-contact supports, providing a semantic representation of them. Our results provide a statistical analysis of the used support poses, their transitions and the time spent in each of them. In addition, our data partially validates our taxonomy of whole-body support poses presented in our previous work. We believe that this work extends our understanding of human motion for humanoids, with a long-term objective of developing methods for autonomous multi-contact motion planning.Comment: 8 pages, IEEE-RAS International Conference on Humanoid Robots (Humanoids) 201

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book

    CGAMES'2009

    Get PDF

    A General Framework for Motion Sensor Based Web Services

    Get PDF
    With the development of motion sensing technology, motion sensor based services have been put into a wide range of applications in recent years. Demand of consuming such service on mobile devices has already emerged. However, as most motion sensors are specifically designed for some heavyweight clients such as PCs or game consoles, there are several technical challenges prohibiting motion sensor from being used by lightweight clients such as mobile devices, for example: There is no direct approach to connect the motion sensor with mobile devices. Most mobile devices don't have enough computational power to consume the motion sensor outputs. To address these problems, I have designed and implemented a framework for publishing general motion sensor functionalities as a RESTful web service that is accessible to mobile devices via HTTP connections. In the framework, a pure HTML5 based interface is delivered to the clients to ensure good accessibility, a websocket based data transferring scheme is adopted to guarantee data transferring efficiency, a server side gesture pipeline is proposed to reduce the client side computational burden and a distributed architecture is designed to make the service scalable. Finally, I conducted three experiments to evaluate the framework's compatibility, scalability and data transferring performance

    WatchTrace: Design and Evaluation of an At-Your-Side Gesture Paradigm

    Get PDF
    In this thesis, we present the exploration and evaluation of a gesture interaction paradigm performed with arms at rest at the side of one's body. This gesture stance is informed persisting challenges in mid-air arm gesture interactions in relation to fatigue and social acceptability. The proposed arms-down posture reduces physical effort by minimizing the shoulder torque placed on the user. While this interaction posture has been previously explored, the gesture vocabulary in previous research has been small and limited. The design of this gesture interaction is motivated by the ability to provide rich and expressive input; the user performs gestures by moving the whole arm at the side of the body to create two-dimensional visual traces, as in hand-drawing in a bounded plane parallel to the ground. Within this space, we present the results of two studies that investigate the use of side-gesture input for interaction. First, we explore the users' mental model for using this interaction by conducting an elicitation study on a set of everyday tasks one would perform on a large display in public to semi-public contexts. The takeaway from this study presents the need for a dynamic and expressive set of gesture vocabulary including ideographic and alphanumeric gesture constructs that can be combined or chained together. We then explore the feasibility of designing such a gesture recognition system using commodity hardware and recognition techniques, dubbed WatchTrace, which supports alphanumeric gestures of up to length three, providing a vibrant, dynamic, and feasible gestural vocabulary. Finally, we explore potential approaches to improve the recognition through the use of adaptive thresholds, n-best lists, and changing reject rates among other conventional techniques in the field of gesture classification

    Innovative Wireless Localization Techniques and Applications

    Get PDF
    Innovative methodologies for the wireless localization of users and related applications are addressed in this thesis. In last years, the widespread diffusion of pervasive wireless communication (e.g., Wi-Fi) and global localization services (e.g., GPS) has boosted the interest and the research on location information and services. Location-aware applications are becoming fundamental to a growing number of consumers (e.g., navigation, advertising, seamless user interaction with smart places), private and public institutions in the fields of energy efficiency, security, safety, fleet management, emergency response. In this context, the position of the user - where is often more valuable for deploying services of interest than the identity of the user itself - who. In detail, opportunistic approaches based on the analysis of electromagnetic field indicators (i.e., received signal strength and channel state information) for the presence detection, the localization, the tracking and the posture recognition of cooperative and non-cooperative (device-free) users in indoor environments are proposed and validated in real world test sites. The methodologies are designed to exploit existing wireless infrastructures and commodity devices without any hardware modification. In outdoor environments, global positioning technologies are already available in commodity devices and vehicles, the research and knowledge transfer activities are actually focused on the design and validation of algorithms and systems devoted to support decision makers and operators for increasing efficiency, operations security, and management of large fleets as well as localized sensed information in order to gain situation awareness. In this field, a decision support system for emergency response and Civil Defense assets management (i.e., personnel and vehicles equipped with TETRA mobile radio) is described in terms of architecture and results of two-years of experimental validation
    • 

    corecore