95,034 research outputs found

    Generating Correlated Ordinal Random Values

    Get PDF
    Ordinal variables appear in many field of statistical research. Since working with simulated data is an accepted technique to improve models or test results there is a need for providing correlated ordinal random values with certain properties like marginal distribution and correlation structure. The present paper describes two methods for generating such values: binary conversion and a mean mapping approach. The algorithms of the two methods are described and some examples of the outcomes are shown

    Bayesian Estimation Under Informative Sampling

    Full text link
    Bayesian analysis is increasingly popular for use in social science and other application areas where the data are observations from an informative sample. An informative sampling design leads to inclusion probabilities that are correlated with the response variable of interest. Model inference performed on the observed sample taken from the population will be biased for the population generative model under informative sampling since the balance of information in the sample data is different from that for the population. Typical approaches to account for an informative sampling design under Bayesian estimation are often difficult to implement because they require re-parameterization of the hypothesized generating model, or focus on design, rather than model-based, inference. We propose to construct a pseudo-posterior distribution that utilizes sampling weights based on the marginal inclusion probabilities to exponentiate the likelihood contribution of each sampled unit, which weights the information in the sample back to the population. Our approach provides a nearly automated estimation procedure applicable to any model specified by the data analyst for the population and retains the population model parameterization and posterior sampling geometry. We construct conditions on known marginal and pairwise inclusion probabilities that define a class of sampling designs where L1L_{1} consistency of the pseudo posterior is guaranteed. We demonstrate our method on an application concerning the Bureau of Labor Statistics Job Openings and Labor Turnover Survey.Comment: 24 pages, 3 figure

    Selection Bias Correction and Effect Size Estimation under Dependence

    Full text link
    We consider large-scale studies in which it is of interest to test a very large number of hypotheses, and then to estimate the effect sizes corresponding to the rejected hypotheses. For instance, this setting arises in the analysis of gene expression or DNA sequencing data. However, naive estimates of the effect sizes suffer from selection bias, i.e., some of the largest naive estimates are large due to chance alone. Many authors have proposed methods to reduce the effects of selection bias under the assumption that the naive estimates of the effect sizes are independent. Unfortunately, when the effect size estimates are dependent, these existing techniques can have very poor performance, and in practice there will often be dependence. We propose an estimator that adjusts for selection bias under a recently-proposed frequentist framework, without the independence assumption. We study some properties of the proposed estimator, and illustrate that it outperforms past proposals in a simulation study and on two gene expression data sets.Comment: 21 pages, 2 figure
    • ā€¦
    corecore