530 research outputs found

    Executable specifications for Java programs

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 55-57).In this thesis, we present a unified environment for running declarative specifications in the context of an imperative object-oriented programming language. Specifications are Alloy-like, written in first-order relational logic with transitive closure, and the imperative language for this purpose is Java. By being able to mix imperative code with executable declarative specifications, the user can easily express constraint problems in-place, i.e. in terms of the existing data structures and objects on the heap. After a solution is found, our framework will automatically update the heap to reflect the solution, so the user can continue to manipulate the program heap in the usual imperative way, without ever having to manually translate the problem back and forth between the host programming environment and the solver language. We show that this approach is not only convenient, but, for certain problems, like puzzles or NP-complete graph algorithms, it can also outperform the manual implementation. We also present an optimization technique that allowed us to run our tool on heaps with almost 2000 objects.by Aleksandar Milicevic.S.M

    Matroids arising from electrical networks

    Full text link
    This paper introduces Dirichlet matroids, a generalization of graphic matroids arising from electrical networks. We present four main results. First, we exhibit a matroid quotient formed by the dual of a network embedded in a surface with boundary and the dual of the associated Dirichlet matroid. This generalizes an analogous result for graphic matroids of cellularly embedded graphs. Second, we characterize the Bergman fans of Dirichlet matroids as explicit subfans of graphic Bergman fans. In doing so, we generalize the connection between Bergman fans of complete graphs and phylogenetic trees. Third, we use the half-plane property of Dirichlet matroids to prove an interlacing result on the real zeros and poles of the trace of the response matrix. And fourth, we bound the coefficients of the precoloring polynomial of a network by the coefficients of the chromatic polynomial of the underlying graph.Comment: 27 pages, 14 figure

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Some Enhancement Methods For Backtracking-Search In Solving Multiple Permutation Problems

    Full text link
    In this dissertation, we present some enhancement methods for backtracking-search in solving multiple permutation problems. Some well-known NP-complete multiple permutation problems are Quasigroup Completion Problem and Sudoku. Multiple permutation problems have been getting a lot of attention in the literature in the recent years due to having a highly structured nature and being a challenging combinatorial search problem. Furthermore, it has been shown that many real-world problems in scheduling and experimental design take the form of multiple permutation problems. Therefore, it has been suggested that they can be used as a benchmark problem to test various enhancement methods for solving constraint satisfaction problems. Then it is hoped that the insight gained from studying them can be applied to other hard structured as well as unstructured problems. Our supplementary and novel enhancement methods for backtracking-search in solving these multiple permutation problems can be summarized as follows: We came up with a novel way to encode multiple permutation problems and then we designed and developed an arc-consistency algorithm that is tailored towards this modeling. We implemented five versions of this arc-consistency algorithm where the last version eliminates almost all of the possible propagation redundancy. Then we introduced the novel notion of interlinking dynamic variable ordering with dynamic value ordering, where the dynamic value ordering is also used as a second tie-breaker for the dynamic variable ordering. We also proposed the concept of integrating dynamic variable ordering and dynamic value ordering into an arc-consistency algorithm by using greedy counting assertions. We developed the concept of enforcing local-consistency between variables from different redundant models of the problem. Finally, we introduced an embarrassingly parallel task distribution process at the beginning of the search. We theoretically proved that the limited form of the Hall\u27s theorem is enforced by our modeling of the multiple permutation problems. We showed with our empirical results that the ``fail-first principle is confirmed in terms of minimizing the total number of explored nodes, but is refuted in terms of minimizing the depth of the search tree when finding a single solution, which correlates with previously published results. We further showed that the performance (total number instances solved at the phase transition point within a given time limit) of a given search heuristic is closely related to the underlying pruning algorithm that is being employed to maintain some level of local-consistency during backtracking-search. We also extended the previously established hypothesis, which stated that the second peak of hardness for NP-complete problems is algorithm dependent, to second peak of hardness for NP-complete problems is also search-heuristic dependent. Then we showed with our empirical results that several of our enhancement methods on backtracking-search perform better than the constraint solvers MAC-LAH and Minion as well as the SAT solvers Satz and MiniSat for previously tested instances of multiple permutation problems on these solvers

    Diversification and Intensification in Hybrid Metaheuristics for Constraint Satisfaction Problems

    Get PDF
    Metaheuristics are used to find feasible solutions to hard Combinatorial Optimization Problems (COPs). Constraint Satisfaction Problems (CSPs) may be formulated as COPs, where the objective is to reduce the number of violated constraints to zero. The popular puzzle Sudoku is an NP-complete problem that has been used to study the effectiveness of metaheuristics in solving CSPs. Applying the Simulated Annealing (SA) metaheuristic to Sudoku has been shown to be a successful method to solve CSPs. However, the ‘easy-hard-easy’ phase-transition behavior frequently attributed to a certain class of CSPs makes finding a solution extremely difficult in the hard phase because of the vast search space, the small number of solutions and a fitness landscape marked by many plateaus and local minima. Two key mechanisms that metaheuristics employ for searching are diversification and intensification. Diversification is the method of identifying diverse promising regions of the search space and is achieved through the process of heating/reheating. Intensification is the method of finding a solution in one of these promising regions and is achieved through the process of cooling. The hard phase area of the search terrain makes traversal without becoming trapped very challenging. Running the best available method - a Constraint Propagation/Depth-First Search algorithm - against 30,000 benchmark problem-instances, 20,240 remain unsolved after ten runs at one minute per run which we classify as very hard. This dissertation studies the delicate balance between diversification and intensification in the search process and offers a hybrid SA algorithm to solve very hard instances. The algorithm presents (a) a heating/reheating strategy that incorporates the lowest solution cost for diversification; (b) a more complex two-stage cooling schedule for faster intensification; (c) Constraint Programming (CP) hybridization to reduce the search space and to escape a local minimum; (d) a three-way swap, secondary neighborhood operator for a low expense method of diversification. These techniques are tested individually and in hybrid combinations for a total of 11 strategies, and the effectiveness of each is evaluated by percentage solved and average best run-time to solution. In the final analysis, all strategies are an improvement on current methods, but the most remarkable results come from the application of the “Quick Reset” technique between cooling stages

    Reward Gaming in Conditional Text Generation

    Full text link
    To align conditional text generation model outputs with desired behaviors, there has been an increasing focus on training the model using reinforcement learning (RL) with reward functions learned from human annotations. Under this framework, we identify three common cases where high rewards are incorrectly assigned to undesirable patterns: noise-induced spurious correlation, naturally occurring spurious correlation, and covariate shift. We show that even though learned metrics achieve high performance on the distribution of the data used to train the reward function, the undesirable patterns may be amplified during RL training of the text generation model. While there has been discussion about reward gaming in the RL or safety community, in this discussion piece, we would like to highlight reward gaming in the natural language generation (NLG) community using concrete conditional text generation examples and discuss potential fixes and areas for future work

    October 17, 2012

    Get PDF
    https://egrove.olemiss.edu/thedmonline/1482/thumbnail.jp
    corecore