23,081 research outputs found

    FABRIC: A Framework for the Design and Evaluation of Collaborative Robots with Extended Human Adaptation

    Full text link
    A limitation for collaborative robots (cobots) is their lack of ability to adapt to human partners, who typically exhibit an immense diversity of behaviors. We present an autonomous framework as a cobot's real-time decision-making mechanism to anticipate a variety of human characteristics and behaviors, including human errors, toward a personalized collaboration. Our framework handles such behaviors in two levels: 1) short-term human behaviors are adapted through our novel Anticipatory Partially Observable Markov Decision Process (A-POMDP) models, covering a human's changing intent (motivation), availability, and capability; 2) long-term changing human characteristics are adapted by our novel Adaptive Bayesian Policy Selection (ABPS) mechanism that selects a short-term decision model, e.g., an A-POMDP, according to an estimate of a human's workplace characteristics, such as her expertise and collaboration preferences. To design and evaluate our framework over a diversity of human behaviors, we propose a pipeline where we first train and rigorously test the framework in simulation over novel human models. Then, we deploy and evaluate it on our novel physical experiment setup that induces cognitive load on humans to observe their dynamic behaviors, including their mistakes, and their changing characteristics such as their expertise. We conduct user studies and show that our framework effectively collaborates non-stop for hours and adapts to various changing human behaviors and characteristics in real-time. That increases the efficiency and naturalness of the collaboration with a higher perceived collaboration, positive teammate traits, and human trust. We believe that such an extended human adaptation is key to the long-term use of cobots.Comment: The article is in review for publication in International Journal of Robotics Researc

    Abductive Design of BDI Agent-based Digital Twins of Organizations

    Get PDF
    For a Digital Twin - a precise, virtual representation of a physical counterpart - of a human-like system to be faithful and complete, it must appeal to a notion of anthropomorphism (i.e., attributing human behaviour to non-human entities) to imitate (1) the externally visible behaviour and (2) the internal workings of that system. Although the Belief-Desire-Intention (BDI) paradigm was not developed for this purpose, it has been used successfully in human modeling applications. In this sense, we introduce in this thesis the notion of abductive design of BDI agent-based Digital Twins of organizations, which builds on two powerful reasoning disciplines: reverse engineering (to recreate the visible behaviour of the target system) and goal-driven eXplainable Artificial Intelligence (XAI) (for viewing the behaviour of the target system through the lens of BDI agents). Precisely speaking, the overall problem we are trying to address in this thesis is to “Find a BDI agent program that best explains (in the sense of formal abduction) the behaviour of a target system based on its past experiences . To do so, we propose three goal-driven XAI techniques: (1) abductive design of BDI agents, (2) leveraging imperfect explanations and (3) mining belief-based explanations. The resulting approach suggests that using goal-driven XAI to generate Digital Twins of organizations in the form of BDI agents can be effective, even in a setting with limited information about the target system’s behaviour

    Team Plan Recognition: A Review of the State of the Art

    Full text link
    There is an increasing need to develop artificial intelligence systems that assist groups of humans working on coordinated tasks. These systems must recognize and understand the plans and relationships between actions for a team of humans working toward a common objective. This article reviews the literature on team plan recognition and surveys the most recent logic-based approaches for implementing it. First, we provide some background knowledge, including a general definition of plan recognition in a team setting and a discussion of implementation challenges. Next, we explain our reasoning for focusing on logic-based methods. Finally, we survey recent approaches from two primary classes of logic-based methods (plan library-based and domain theory-based). We aim to bring more attention to this sparse but vital topic and inspire new directions for implementing team plan recognition.Comment: 10 pages, 1 figure, 1 table. Abstract accepted, paper submitted to 14th International Conference on Applied Human Factors and Ergonomics (AHFE 2023

    Artificial Intelligence Applied to Conceptual Design. A Review of Its Use in Architecture

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] Conceptual architectural design is a complex process that draws on past experience and creativity to generate new designs. The application of artificial intelligence to this process should not be oriented toward finding a solution in a defined search space since the design requirements are not yet well defined in the conceptual stage. Instead, this process should be considered as an exploration of the requirements, as well as of possible solutions to meet those requirements. This work offers a tour of major research projects that apply artificial intelligence solutions to architectural conceptual design. We examine several approaches, but most of the work focuses on the use of evolutionary computing to perform these tasks. We note a marked increase in the number of papers in recent years, especially since 2015. Most employ evolutionary computing techniques, including cellular automata. Most initial approaches were oriented toward finding innovative and creative forms, while the latest research focuses on optimizing architectural form.This project was supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia (Ref. ED431G/01, ED431D 2017/16), and the Spanish Ministry of Economy and Competitiveness via funding of the unique installation BIOCAI (UNLC08-1E-002, UNLC13-13-3503) and the European Regional Development Funds (FEDER)Xunta de Galicia; ED431G/01Xunta de Galicia; ED431D 2017/1

    Qualitative and Quantitative Solution Diversity in Heuristic-Search and Case-Based Planning

    Get PDF
    Planning is a branch of Artificial Intelligence (AI) concerned with projecting courses of actions for executing tasks and reaching goals. AI Planning helps increase the autonomy of artificially intelligent agents and decrease the cognitive load burdening human planners working in challenging domains, such as the Mars exploration projects. Approaches to AI planning include first-principles heuristic search planning and case-based planning. The former conducts a heuristic-guided search in the solution space, while the latter generates new solutions by adapting solutions to previously-solved problems.The ability to generate not just one solution, but a set of meaningfully diverse solutions to each planning problem helps cater to a wider variety of user preferences and needs (which it may be difficult or even unfeasible to acquire and/or represent in their entirety), produce viable alternative courses of action to fall back on in case of failure, counter varied threats in intrusion detection, render computer games more compelling, and provide representative samples of the vast search spaces of planning problems.This work describes a general framework for generating diverse sets of solutions (i.e. courses of action) to planning problems. The general diversity-aware planning algorithm consists of iteratively generating solutions using a composite candidate-solution evaluation criterion taking into account both how promising the candidate solutions appear in their own right and on how likely they are to increase the overall diversity of the final set of solutions. This estimate of diversity is based on distance metrics, i.e. measures of the dissimilarity between two solutions. Distance metrics can be quantitative or qualitative.Quantitative distance measures are domain-independent. They require minimum knowledge engineering, but may not reflect dissimilarities that are truly meaningful. Qualitative distance metrics are domain-specific and reflect, based on the domain knowledge encoded within them, the kind of meaningful dissimilarities that might be identified by a person familiar with the domain.Based on the general framework for diversity-aware planning, three domain-independent planning algorithms have been implemented and are described and evaluated herein. DivFF is a diverse heuristic search planner for deterministic planning domains (i.e. domains for which the assumption is made that any action can only have one possible outcome). DivCBP is a diverse case-based planner, also for deterministic planning domains. DivNDP is a heuristic search planner for nondeterministic planning domains (i.e. domains the descriptions of which include actions with multiple possible outcomes). The experimental evaluation of the three algorithms is conducted on a computer game domain, chosen for its challenging characteristics, which include nondeterminism and dynamism. The generated courses of action are run in the game in order to ascertain whether they affect the game environment in diverse ways. This constitutes the test of their genuine diversity, which cannot be evaluated accurately based solely on their low-level structure.It is shown that all proposed planning systems successfully generate sets of diverse solutions using varied criteria for assessing solution dissimilarity. Qualitatively-diverse solution sets are demonstrated to constantly produce more diverse effects in the game environment than quantitatively-diverse solution sets.A comparison between the two planning systems for deterministic domains, DivCBP and DivFF, reveals the former to be more successful at consistently generating diverse sets of solutions. The reasons for this are investigated, thus contributing to the literature of comparative studies of first-principles and case-based planning approaches. Finally, an application of diversity in planning is showcased: simulating personality-trait variation in computer game characters. Sets of diverse solutions to both deterministic and nondeterministic planning problems are shown to successfully create diverse character behavior in the evaluation environment

    A practical guide to multi-objective reinforcement learning and planning

    Get PDF
    Real-world sequential decision-making tasks are generally complex, requiring trade-offs between multiple, often conflicting, objectives. Despite this, the majority of research in reinforcement learning and decision-theoretic planning either assumes only a single objective, or that multiple objectives can be adequately handled via a simple linear combination. Such approaches may oversimplify the underlying problem and hence produce suboptimal results. This paper serves as a guide to the application of multi-objective methods to difficult problems, and is aimed at researchers who are already familiar with single-objective reinforcement learning and planning methods who wish to adopt a multi-objective perspective on their research, as well as practitioners who encounter multi-objective decision problems in practice. It identifies the factors that may influence the nature of the desired solution, and illustrates by example how these influence the design of multi-objective decision-making systems for complex problems. © 2022, The Author(s)
    • …
    corecore