673 research outputs found

    Propagators and Violation Functions for Geometric and Workload Constraints Arising in Airspace Sectorisation

    Full text link
    Airspace sectorisation provides a partition of a given airspace into sectors, subject to geometric constraints and workload constraints, so that some cost metric is minimised. We make a study of the constraints that arise in airspace sectorisation. For each constraint, we give an analysis of what algorithms and properties are required under systematic search and stochastic local search

    Constraint Propagation and Explanation over Novel Types by Abstract Compilation

    Get PDF
    © Graeme Gange and Peter J. Stuckey. The appeal of constraint programming (CP) lies in compositionality - the ability to mix and match constraints as needed. However, this flexibility typically does not extend to the types of variables. Solvers usually support only a small set of pre-defined variable types, and extending this is not typically a simple exercise: not only must the solver engine be updated, but then the library of supported constraints must be re-implemented to support the new type. In this paper, we attempt to ease this second step. We describe a system for automatically deriving a native-code implementation of a global constraint (over novel variable types) from a declarative specification, complete with the ability to explain its propagation, a requirement if we want to make use of modern lazy clause generation CP solvers. We demonstrate this approach by adding support for wrapped-integer variables to chuffed, a lazy clause generation CP solver

    Status and Future Perspectives for Lattice Gauge Theory Calculations to the Exascale and Beyond

    Full text link
    In this and a set of companion whitepapers, the USQCD Collaboration lays out a program of science and computing for lattice gauge theory. These whitepapers describe how calculation using lattice QCD (and other gauge theories) can aid the interpretation of ongoing and upcoming experiments in particle and nuclear physics, as well as inspire new ones.Comment: 44 pages. 1 of USQCD whitepapers

    Flexible constrained sampling with guarantees for pattern mining

    Get PDF
    Pattern sampling has been proposed as a potential solution to the infamous pattern explosion. Instead of enumerating all patterns that satisfy the constraints, individual patterns are sampled proportional to a given quality measure. Several sampling algorithms have been proposed, but each of them has its limitations when it comes to 1) flexibility in terms of quality measures and constraints that can be used, and/or 2) guarantees with respect to sampling accuracy. We therefore present Flexics, the first flexible pattern sampler that supports a broad class of quality measures and constraints, while providing strong guarantees regarding sampling accuracy. To achieve this, we leverage the perspective on pattern mining as a constraint satisfaction problem and build upon the latest advances in sampling solutions in SAT as well as existing pattern mining algorithms. Furthermore, the proposed algorithm is applicable to a variety of pattern languages, which allows us to introduce and tackle the novel task of sampling sets of patterns. We introduce and empirically evaluate two variants of Flexics: 1) a generic variant that addresses the well-known itemset sampling task and the novel pattern set sampling task as well as a wide range of expressive constraints within these tasks, and 2) a specialized variant that exploits existing frequent itemset techniques to achieve substantial speed-ups. Experiments show that Flexics is both accurate and efficient, making it a useful tool for pattern-based data exploration.Comment: Accepted for publication in Data Mining & Knowledge Discovery journal (ECML/PKDD 2017 journal track

    The Gribov problem and QCD dynamics

    Get PDF
    In 1967, Faddeev and Popov were able to quantize the Yang-Mills theory by introducing new particles called ghost through the introduction of a gauge. Ever since, this quantization has become a standard textbook item. Some years later, Gribov discovered that the gauge fixing was not complete, gauge copies called Gribov copies were still present and could affect the infrared region of quantities like the gauge dependent gluon and ghost propagator. This feature was often in literature related to confinement. Some years later, the semi-classical approach of Gribov was generalized to all orders and the so-called GZ action was born. Ever since, many related articles were published. This review tends to give a pedagogic review of the ideas of Gribov and the subsequent construction of the GZ action, including many other toipics related to the Gribov region. It is shown how the GZ action can be viewed as a non-perturbative tool which has relations with other approaches towards confinement. Many different features related to the GZ action shall be discussed in detail, such as BRST breaking, the KO criterion, the propagators, etc. We shall also compare with the lattice data and other non-perturbative approaches, including stochastic quantization.Comment: 121 pages, 12 figures, Review article, references adde

    Modern techniques for constraint solving the CASPER experience

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Informática, pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaConstraint programming is a well known paradigm for addressing combinatorial problems which has enjoyed considerable success for solving many relevant industrial and academic problems. At the heart of constraint programming lies the constraint solver, a computer program which attempts to find a solution to the problem, i.e. an assignment of all the variables in the problemsuch that all the constraints are satisfied. This dissertation describes a set of techniques to be used in the implementation of a constraint solver. These techniques aim at making a constraint solver more extensible and efficient,two properties which are hard to integrate in general, and in particular within a constraint solver. Specifically, this dissertation addresses two major problems: generic incremental propagation and propagation of arbitrary decomposable constraints. For both problemswe present a set of techniques which are novel, correct, and directly concerned with extensibility and efficiency. All the material in this dissertation emerged from our work in designing and implementing a generic constraint solver. The CASPER (Constraint Solving Platformfor Engineering and Research)solver does not only act as a proof-of-concept for the presented techniques, but also served as the common test platform for the many discussed theoretical models. Besides the work related to the design and implementation of a constraint solver, this dissertation also presents the first successful application of the resulting platform for addressing an open research problem, namely finding good heuristics for efficiently directing search towards a solution
    • …
    corecore