1,323 research outputs found

    Filling triangular holes by convex combination of surfaces

    Get PDF
    A surface generation method is presented based on convex combination of surfaces with rational weight functions. The three constituents and the resulting surface are defined over the same triangular domain. The constructed surface matches each component along one of its boundary curves with C0 or C1 continuity depending on the weight functions in the combination. The method can be applied in surface modelling for filling triangular holes

    Tangent-ball techniques for shape processing

    Get PDF
    Shape processing defines a set of theoretical and algorithmic tools for creating, measuring and modifying digital representations of shapes.  Such tools are of paramount importance to many disciplines of computer graphics, including modeling, animation, visualization, and image processing.  Many applications of shape processing can be found in the entertainment and medical industries. In an attempt to improve upon many previous shape processing techniques, the present thesis explores the theoretical and algorithmic aspects of a difference measure, which involves fitting a ball (disk in 2D and sphere in 3D) so that it has at least one tangential contact with each shape and the ball interior is disjoint from both shapes. We propose a set of ball-based operators and discuss their properties, implementations, and applications.  We divide the group of ball-based operations into unary and binary as follows: Unary operators include: * Identifying details (sharp, salient features, constrictions) * Smoothing shapes by removing such details, replacing them by fillets and roundings * Segmentation (recognition, abstract modelization via centerline and radius variation) of tubular structures Binary operators include: * Measuring the local discrepancy between two shapes * Computing the average of two shapes * Computing point-to-point correspondence between two shapes * Computing circular trajectories between corresponding points that meet both shapes at right angles * Using these trajectories to support smooth morphing (inbetweening) * Using a curve morph to construct surfaces that interpolate between contours on consecutive slices The technical contributions of this thesis focus on the implementation of these tangent-ball operators and their usefulness in applications of shape processing. We show specific applications in the areas of animation and computer-aided medical diagnosis.  These algorithms are simple to implement, mathematically elegant, and fast to execute.Ph.D.Committee Chair: Jarek Rossignac; Committee Member: Greg Slabaugh; Committee Member: Greg Turk; Committee Member: Karen Liu; Committee Member: Maryann Simmon

    Doctor of Philosophy

    Get PDF
    dissertationWhile boundary representations, such as nonuniform rational B-spline (NURBS) surfaces, have traditionally well served the needs of the modeling community, they have not seen widespread adoption among the wider engineering discipline. There is a common perception that NURBS are slow to evaluate and complex to implement. Whereas computer-aided design commonly deals with surfaces, the engineering community must deal with materials that have thickness. Traditional visualization techniques have avoided NURBS, and there has been little cross-talk between the rich spline approximation community and the larger engineering field. Recently there has been a strong desire to marry the modeling and analysis phases of the iterative design cycle, be it in car design, turbulent flow simulation around an airfoil, or lighting design. Research has demonstrated that employing a single representation throughout the cycle has key advantages. Furthermore, novel manufacturing techniques employing heterogeneous materials require the introduction of volumetric modeling representations. There is little question that fields such as scientific visualization and mechanical engineering could benefit from the powerful approximation properties of splines. In this dissertation, we remove several hurdles to the application of NURBS to problems in engineering and demonstrate how their unique properties can be leveraged to solve problems of interest

    Approximation of sweep surfaces by tensor product B-splines

    Get PDF
    Journal ArticleTensor product B-spline approximations to surfaces generated by sweeping a (possibly deforming) B-spline cross-section curve along a Bspline axis curve are discussed. A general form for the tensor product B-spline approximation for sweeps is derived and expressed in terms of the approximation of a set of offset curves of the axis curve. The actual algorithm used to generate the approximation depends on the nature of the desired deformation and change in orientation that the crosssection undergoes as it is swept along the axis. Several algorithms for generating tensor product B-spline approximations to sweep surfaces are presented

    C2 popunjavanje praznina pomoću konveksne kombinacije ploha pod rubnim ograničenjima

    Get PDF
    Two surface generation methods are presented, one for connecting two surfaces with C2 continuity while matching also two prescribed border lines on the free sides of the gap, and one for G1 filling a three-sided hole in a special case. The surfaces are generated as convex combination of surface and curve constituents with an appropriate correction function, and are represented in parametric form.Dane su dvije metode za izvođenje ploha. Jedna za povezivanje dviju ploha sa C2 neprekinutošću koja odgovara i dvjema graničnim linijama, a druga za G1 popunjavanje posebnog slučaja trostrane rupe. Plohe se izvode kao konveksna kombinacija plošnih i krivuljnih sastavnih dijelova sa odgovarajućom korektivnom funkcijom, a dane su u parametarskom obliku

    A Brief History of the Department of Geometry between Anniversaries 40 and 50

    Get PDF

    C2 popunjavanje praznina pomoću konveksne kombinacije ploha pod rubnim ograničenjima

    Get PDF
    Two surface generation methods are presented, one for connecting two surfaces with C2 continuity while matching also two prescribed border lines on the free sides of the gap, and one for G1 filling a three-sided hole in a special case. The surfaces are generated as convex combination of surface and curve constituents with an appropriate correction function, and are represented in parametric form.Dane su dvije metode za izvođenje ploha. Jedna za povezivanje dviju ploha sa C2 neprekinutošću koja odgovara i dvjema graničnim linijama, a druga za G1 popunjavanje posebnog slučaja trostrane rupe. Plohe se izvode kao konveksna kombinacija plošnih i krivuljnih sastavnih dijelova sa odgovarajućom korektivnom funkcijom, a dane su u parametarskom obliku

    High-performance geometric vascular modelling

    Get PDF
    Image-based high-performance geometric vascular modelling and reconstruction is an essential component of computer-assisted surgery on the diagnosis, analysis and treatment of cardiovascular diseases. However, it is an extremely challenging task to efficiently reconstruct the accurate geometric structures of blood vessels out of medical images. For one thing, the shape of an individual section of a blood vessel is highly irregular because of the squeeze of other tissues and the deformation caused by vascular diseases. For another, a vascular system is a very complicated network of blood vessels with different types of branching structures. Although some existing vascular modelling techniques can reconstruct the geometric structure of a vascular system, they are either time-consuming or lacking sufficient accuracy. What is more, these techniques rarely consider the interior tissue of the vascular wall, which consists of complicated layered structures. As a result, it is necessary to develop a better vascular geometric modelling technique, which is not only of high performance and high accuracy in the reconstruction of vascular surfaces, but can also be used to model the interior tissue structures of the vascular walls.This research aims to develop a state-of-the-art patient-specific medical image-based geometric vascular modelling technique to solve the above problems. The main contributions of this research are:- Developed and proposed the Skeleton Marching technique to reconstruct the geometric structures of blood vessels with high performance and high accuracy. With the proposed technique, the highly complicated vascular reconstruction task is reduced to a set of simple localised geometric reconstruction tasks, which can be carried out in a parallel manner. These locally reconstructed vascular geometric segments are then combined together using shape-preserving blending operations to faithfully represent the geometric shape of the whole vascular system.- Developed and proposed the Thin Implicit Patch method to realistically model the interior geometric structures of the vascular tissues. This method allows the multi-layer interior tissue structures to be embedded inside the vascular wall to illustrate the geometric details of the blood vessel in real world

    An Electronic topological picturebook

    Get PDF
    Ankara : The Department of Computer Engineering and Information Science and the Institute of Graduate Studies of Bilkent University, 1992.Thesis (Ph.D.) -- Bilkent University, 1992.Includes bibliographical references leaves 73-78.An electronic topological picturebook is envisaged as a computerized version of A Topological Picturehook by George K. Francis, .Springer-Verlag, New York (1987). Francis’ book is full of complicated topological figures, mostly drawn manually. The main goal of the thesis is to automate the production of such illustrations and to obtain publication-quality hardcopy using assorted techniques of computer graphics. To that end, sweeping is discussed as a major surface modeling tool. Some interactive methods are given to produce interesting topological surfaces. The program Tb (which stands for ‘Topologybook’) is described and various pictures generated by this software are presented. Tl· is a free-form surface modeler and produces topological shapes with little effort. Central to the implementation of Tb is a paradigm of solid modeling in which computation of a shape is regarded as sweeping with some parametric variations, viz. shape = sweep + control.Arslan, AhmetPh.D
    corecore