6,261 research outputs found

    ROYALE: A Framework for Universally Composable Card Games with Financial Rewards and Penalties Enforcement

    Get PDF
    While many tailor made card game protocols are known, the vast majority of those suffer from three main issues: lack of mechanisms for distributing financial rewards and punishing cheaters, lack of composability guarantees and little flexibility, focusing on the specific game of poker. Even though folklore holds that poker protocols can be used to play any card game, this conjecture remains unproven and, in fact, does not hold for a number of protocols (including recent results). We both tackle the problem of constructing protocols for general card games and initiate a treatment of such protocols in the Universal Composability (UC) framework, introducing an ideal functionality that captures general card games constructed from a set of core card operations. Based on this formalism, we introduce Royale, the first UC-secure general card games which supports financial rewards/penalties enforcement. We remark that Royale also yields the first UC-secure poker protocol. Interestingly, Royale performs better than most previous works (that do not have composability guarantees), which we highlight through a detailed concrete complexity analysis and benchmarks from a prototype implementation

    Betrayal, Distrust, and Rationality: Smart Counter-Collusion Contracts for Verifiable Cloud Computing

    Get PDF
    Cloud computing has become an irreversible trend. Together comes the pressing need for verifiability, to assure the client the correctness of computation outsourced to the cloud. Existing verifiable computation techniques all have a high overhead, thus if being deployed in the clouds, would render cloud computing more expensive than the on-premises counterpart. To achieve verifiability at a reasonable cost, we leverage game theory and propose a smart contract based solution. In a nutshell, a client lets two clouds compute the same task, and uses smart contracts to stimulate tension, betrayal and distrust between the clouds, so that rational clouds will not collude and cheat. In the absence of collusion, verification of correctness can be done easily by crosschecking the results from the two clouds. We provide a formal analysis of the games induced by the contracts, and prove that the contracts will be effective under certain reasonable assumptions. By resorting to game theory and smart contracts, we are able to avoid heavy cryptographic protocols. The client only needs to pay two clouds to compute in the clear, and a small transaction fee to use the smart contracts. We also conducted a feasibility study that involves implementing the contracts in Solidity and running them on the official Ethereum network.Comment: Published in ACM CCS 2017, this is the full version with all appendice
    • …
    corecore