9,948 research outputs found

    Robust causal structure learning with some hidden variables

    Full text link
    We introduce a new method to estimate the Markov equivalence class of a directed acyclic graph (DAG) in the presence of hidden variables, in settings where the underlying DAG among the observed variables is sparse, and there are a few hidden variables that have a direct effect on many of the observed ones. Building on the so-called low rank plus sparse framework, we suggest a two-stage approach which first removes the effect of the hidden variables, and then estimates the Markov equivalence class of the underlying DAG under the assumption that there are no remaining hidden variables. This approach is consistent in certain high-dimensional regimes and performs favourably when compared to the state of the art, both in terms of graphical structure recovery and total causal effect estimation

    Efficient Sparse Coding in Early Sensory Processing: Lessons from Signal Recovery

    Get PDF
    Sensory representations are not only sparse, but often overcomplete: coding units significantly outnumber the input units. For models of neural coding this overcompleteness poses a computational challenge for shaping the signal processing channels as well as for using the large and sparse representations in an efficient way. We argue that higher level overcompleteness becomes computationally tractable by imposing sparsity on synaptic activity and we also show that such structural sparsity can be facilitated by statistics based decomposition of the stimuli into typical and atypical parts prior to sparse coding. Typical parts represent large-scale correlations, thus they can be significantly compressed. Atypical parts, on the other hand, represent local features and are the subjects of actual sparse coding. When applied on natural images, our decomposition based sparse coding model can efficiently form overcomplete codes and both center-surround and oriented filters are obtained similar to those observed in the retina and the primary visual cortex, respectively. Therefore we hypothesize that the proposed computational architecture can be seen as a coherent functional model of the first stages of sensory coding in early vision

    Tracking International Funding to Womens Financial Inclusion in Bangladesh

    Get PDF
    In October 2020, Publish What You Fund embarked on a multi-year project to improve the transparency of funding for women's economic empowerment (WEE), women's financial inclusion (WFI), women's empowerment collectives (WECs), and gender integration (GI). We are tracking national and international funding to WEE, WFI, and WECs as well as assessing which funders have a GI approach. We have three focus countries for this phase of the work: Bangladesh, Kenya, and Nigeria

    Tracking International Funding to Womens Financial Inclusion in Kenya

    Get PDF
    In October 2020, Publish What You Fund embarked on a multi-year project to improve the transparency of funding for women's economic empowerment (WEE), women's financial inclusion (WFI), women's empowerment collectives (WECs), and gender integration (GI). We are tracking national and international funding to WEE, WFI, and WECs as well as assessing which funders have a GI approach. We have three focus countries for this phase of the work: Bangladesh, Kenya, and Nigeria

    Advances in Nuclear Magnetic Resonance for Drug Discovery

    Get PDF
    Background—Drug discovery is a complex and unpredictable endeavor with a high failure rate. Current trends in the pharmaceutical industry have exasperated these challenges and are contributing to the dramatic decline in productivity observed over the last decade. The industrialization of science by forcing the drug discovery process to adhere to assembly-line protocols is imposing unnecessary restrictions, such as short project time-lines. Recent advances in nuclear magnetic resonance are responding to these self-imposed limitations and are providing opportunities to increase the success rate of drug discovery. Objective/Method—A review of recent advancements in NMR technology that have the potential of significantly impacting and benefiting the drug discovery process will be presented. These include fast NMR data collection protocols and high-throughput protein structure determination, rapid protein-ligand co-structure determination, lead discovery using fragment-based NMR affinity screens, NMR metabolomics to monitor in vivo efficacy and toxicity for lead compounds, and the identification of new therapeutic targets through the functional annotation of proteins by FASTNMR. Conclusion—NMR is a critical component of the drug discovery process, where the versatility of the technique enables it to continually expand and evolve its role. NMR is expected to maintain this growth over the next decade with advancements in automation, speed of structure calculation, incell imaging techniques, and the expansion of NMR amenable targets
    • …
    corecore