6 research outputs found

    Numerical simulation of fracture pattern development and implications for fuid flow

    No full text
    Simulations are instrumental to understanding flow through discrete fracture geometric representations that capture the large-scale permeability structure of fractured porous media. The contribution of this thesis is threefold: an efficient finite-element finite-volume discretisation of the advection/diffusion flow equations, a geomechanical fracture propagation algorithm to create fractured rock analogues, and a study of the effect of growth on hydraulic conductivity. We describe an iterative geomechanics-based finite-element model to simulate quasi-static crack propagation in a linear elastic matrix from an initial set of random flaws. The cornerstones are a failure and propagation criterion as well as a geometric kernel for dynamic shape housekeeping and automatic remeshing. Two-dimensional patterns exhibit connectivity, spacing, and density distributions reproducing en echelon crack linkage, tip hooking, and polygonal shrinkage forms. Differential stresses at the boundaries yield fracture curving. A stress field study shows that curvature can be suppressed by layer interaction effects. Our method is appropriate to model layered media where interaction with neighbouring layers does not dominate deformation. Geomechanically generated fracture patterns are the input to single-phase flow simulations through fractures and matrix. Thus, results are applicable to fractured porous media in addition to crystalline rocks. Stress state and deformation history control emergent local fracture apertures. Results depend on the number of initial flaws, their initial random distribution, and the permeability of the matrix. Straightpath fracture pattern simplifications yield a lower effective permeability in comparison to their curved counterparts. Fixed apertures overestimate the conductivity of the rock by up to six orders of magnitude. Local sample percolation effects are representative of the entire model flow behaviour for geomechanical apertures. Effective permeability in fracture dataset subregions are higher than the overall conductivity of the system. The presented methodology captures emerging patterns due to evolving geometric and flow properties essential to the realistic simulation of subsurface processes

    Techniques for Realtime Viewing and Manipulation of Volumetric Data

    Get PDF
    Visualizing and manipulating volumetric data is a major component in many areas including anatomical registration in biomedical fields, seismic data analysis in the oil industry, machine part design in computer-aided geometric design, character animation in the movie industry, and fluid simulation. These industries have to meet the demands of the times and be able to make meaningful assertions about the data they generate. The shear size of this data presents many challenges to facilitating realtime interaction. In the recent decade, graphics hardware has become increasingly powerful and more sophisticated which has introduced a new realm of possibilities for processing volumetric data. This thesis focuses on a suite of techniques for viewing and editing volumetric data that efficiently use the processing power of central processing units (CPUs) as well as the large processing power of the graphics hardware (GPUs). This work begins with an algorithm to improve the efficiency of a texture-based volume rendering. We continue with a framework for performing realtime constructive solid geometry (CSG) with complex shapes and smoothing operations on watertight meshes based on a variation of Depth Peeling. We then move to an intuitive technique for deforming volumetric data using a collection of control points. Finally, we apply this technique to image registration of 3-dimensional computed tomography (CT) images used for lung cancel treatment, planning

    Pinning down loosened prostheses : imaging and planning of percutaneous hip reïŹxation

    Get PDF
    This thesis examines how computer software can be used to analyse medical images of an aseptically loosening hip prosthesis, and subsequently to plan and guide a minimally invasive cement injection procedure to stabilize the prosthesis. We addressed the detection and measurement of periprosthetic bone lesions from CT image volumes. Post-operative CTs of patients treated at our institution were analysed. We developed tissue classification algorithms that automatically label periprosthetic bone, cement and fibrous interface tissue. An existing particle-based multi-material meshing algorithm was adapted for improved Finite Element model creation. We then presented HipRFX, a proof-of-concept software tool for planning and guidance during percutaneous cement refixation procedures.Advanced School for Computing and Imaging (ASCI), Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting Anna Fonds, Technologiestichting STWUBL - phd migration 201

    GPU data structures for graphics and vision

    Get PDF
    Graphics hardware has in recent years become increasingly programmable, and its programming APIs use the stream processor model to expose massive parallelization to the programmer. Unfortunately, the inherent restrictions of the stream processor model, used by the GPU in order to maintain high performance, often pose a problem in porting CPU algorithms for both video and volume processing to graphics hardware. Serial data dependencies which accelerate CPU processing are counterproductive for the data-parallel GPU. This thesis demonstrates new ways for tackling well-known problems of large scale video/volume analysis. In some instances, we enable processing on the restricted hardware model by re-introducing algorithms from early computer graphics research. On other occasions, we use newly discovered, hierarchical data structures to circumvent the random-access read/fixed write restriction that had previously kept sophisticated analysis algorithms from running solely on graphics hardware. For 3D processing, we apply known game graphics concepts such as mip-maps, projective texturing, and dependent texture lookups to show how video/volume processing can benefit algorithmically from being implemented in a graphics API. The novel GPU data structures provide drastically increased processing speed, and lift processing heavy operations to real-time performance levels, paving the way for new and interactive vision/graphics applications.Graphikhardware wurde in den letzen Jahren immer weiter programmierbar. Ihre APIs verwenden das Streamprozessor-Modell, um die massive Parallelisierung auch fĂŒr den Programmierer verfĂŒgbar zu machen. Leider folgen aus dem strikten Streamprozessor-Modell, welches die GPU fĂŒr ihre hohe Rechenleistung benötigt, auch Hindernisse in der Portierung von CPU-Algorithmen zur Video- und Volumenverarbeitung auf die GPU. Serielle DatenabhĂ€ngigkeiten beschleunigen zwar CPU-Verarbeitung, sind aber fĂŒr die daten-parallele GPU kontraproduktiv . Diese Arbeit prĂ€sentiert neue Herangehensweisen fĂŒr bekannte Probleme der Video- und Volumensverarbeitung. Teilweise wird die Verarbeitung mit Hilfe von modifizierten Algorithmen aus der frĂŒhen Computergraphik-Forschung an das beschrĂ€nkte Hardwaremodell angepasst. Anderswo helfen neu entdeckte, hierarchische Datenstrukturen beim Umgang mit den Schreibzugriff-Restriktionen die lange die Portierung von komplexeren Bildanalyseverfahren verhindert hatten. In der 3D-Verarbeitung nutzen wir bekannte Konzepte aus der Computerspielegraphik wie Mipmaps, projektive Texturierung, oder verkettete Texturzugriffe, und zeigen auf welche Vorteile die Video- und Volumenverarbeitung aus hardwarebeschleunigter Graphik-API-Implementation ziehen kann. Die prĂ€sentierten GPU-Datenstrukturen bieten drastisch schnellere Verarbeitung und heben rechenintensive Operationen auf Echtzeit-Niveau. Damit werden neue, interaktive Bildverarbeitungs- und Graphik-Anwendungen möglich

    Proceedings. 9th 3DGeoInfo Conference 2014, [11-13 November 2014, Dubai]

    Get PDF
    It is known that, scientific disciplines such as geology, geophysics, and reservoir exploration intrinsically use 3D geo-information in their models and simulations. However, 3D geo-information is also urgently needed in many traditional 2D planning areas such as civil engineering, city and infrastructure modeling, architecture, environmental planning etc. Altogether, 3DGeoInfo is an emerging technology that will greatly influence the market within the next few decades. The 9th International 3DGeoInfo Conference aims at bringing together international state-of-the-art researchers and practitioners facilitating the dialogue on emerging topics in the field of 3D geo-information. The conference in Dubai offers an interdisciplinary forum of sub- and above-surface 3D geo-information researchers and practitioners dealing with data acquisition, modeling, management, maintenance, visualization, and analysis of 3D geo-information

    Generating Watertight Isosurfaces from 3D Seismic Data

    No full text
    Seismic data visualisation and analysis is an area of research interest for a lot of commercial and academic disciplines. It enables the geoscientists to understand structures underneath the earth. It is an important step in building subsurface geological models to identify hydrocarbon reservoirs and running geological simulations. Good quality watertight surface meshes are required for constructing these models for accurate identification and extraction of strata/horizons that contain carbon deposits such as fuel and gas. This research demonstrates extracting watertight geometric surfaces from 3D seismic volumes to improve horizon identification and extraction. Isosurfaces and Fiber Surfaces are proposed for extracting horizons from seismic data. Initial tests with isosurfaces have been conducted and further experiments using fiber furfaces are underway as next direction and discussed in sections 4.5 and 4.6
    corecore