25,468 research outputs found

    System Utterance Generation by Label Propagation over Association Graph of Words and Utterance Patterns for Open-Domain Dialogue Systems

    Get PDF
    A novel graph-based utterance generation method for open-domain dialogue systems is proposed in this paper. After an association graph of words and utterance patterns from a dialogue corpus is constructed, a label propa-gation algorithm is used for generating system utterances from the words and utterance pat-terns in the association graph that are found to strongly correlate with the words and ut-terance patterns that appeared in previous user utterances. We also propose a crowdsourcing framework for collecting annotated chat data so that we can implement our method in a cost effective manner. Crowdsourcing is also used for conducting subjective evaluations and the results will show that the proposed method can not only provide interesting and informative responses but it also can appropriately expand the topics by comparing them to a well-known chat system in Japanese.

    Stochastic Language Generation in Dialogue using Recurrent Neural Networks with Convolutional Sentence Reranking

    Full text link
    The natural language generation (NLG) component of a spoken dialogue system (SDS) usually needs a substantial amount of handcrafting or a well-labeled dataset to be trained on. These limitations add significantly to development costs and make cross-domain, multi-lingual dialogue systems intractable. Moreover, human languages are context-aware. The most natural response should be directly learned from data rather than depending on predefined syntaxes or rules. This paper presents a statistical language generator based on a joint recurrent and convolutional neural network structure which can be trained on dialogue act-utterance pairs without any semantic alignments or predefined grammar trees. Objective metrics suggest that this new model outperforms previous methods under the same experimental conditions. Results of an evaluation by human judges indicate that it produces not only high quality but linguistically varied utterances which are preferred compared to n-gram and rule-based systems.Comment: To be appear in SigDial 201

    Using dialogue to learn math in the LeActiveMath project

    Get PDF
    We describe a tutorial dialogue system under development that assists students in learning how to differentiate equations. The system uses deep natural language understanding and generation to both interpret students ’ utterances and automatically generate a response that is both mathematically correct and adapted pedagogically and linguistically to the local dialogue context. A domain reasoner provides the necessary knowledge about how students should approach math problems as well as their (in)correctness, while a dialogue manager directs pedagogical strategies and keeps track of what needs to be done to keep the dialogue moving along.

    Learning Symmetric Collaborative Dialogue Agents with Dynamic Knowledge Graph Embeddings

    Full text link
    We study a symmetric collaborative dialogue setting in which two agents, each with private knowledge, must strategically communicate to achieve a common goal. The open-ended dialogue state in this setting poses new challenges for existing dialogue systems. We collected a dataset of 11K human-human dialogues, which exhibits interesting lexical, semantic, and strategic elements. To model both structured knowledge and unstructured language, we propose a neural model with dynamic knowledge graph embeddings that evolve as the dialogue progresses. Automatic and human evaluations show that our model is both more effective at achieving the goal and more human-like than baseline neural and rule-based models.Comment: ACL 201

    Deep Reinforcement Learning for Dialogue Generation

    Full text link
    Recent neural models of dialogue generation offer great promise for generating responses for conversational agents, but tend to be shortsighted, predicting utterances one at a time while ignoring their influence on future outcomes. Modeling the future direction of a dialogue is crucial to generating coherent, interesting dialogues, a need which led traditional NLP models of dialogue to draw on reinforcement learning. In this paper, we show how to integrate these goals, applying deep reinforcement learning to model future reward in chatbot dialogue. The model simulates dialogues between two virtual agents, using policy gradient methods to reward sequences that display three useful conversational properties: informativity (non-repetitive turns), coherence, and ease of answering (related to forward-looking function). We evaluate our model on diversity, length as well as with human judges, showing that the proposed algorithm generates more interactive responses and manages to foster a more sustained conversation in dialogue simulation. This work marks a first step towards learning a neural conversational model based on the long-term success of dialogues

    From Monologue to Dialogue: Natural Language Generation in OVIS

    Get PDF
    This paper describes how a language generation system that was originally designed for monologue generation, has been adapted for use in the OVIS spoken dialogue system. To meet the requirement that in a dialogue, the system's utterances should make up a single, coherent dialogue turn, several modifications had to be made to the system. The paper also discusses the influence of dialogue context on information status, and its consequences for the generation of referring expressions and accentuation

    Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models

    Full text link
    We investigate the task of building open domain, conversational dialogue systems based on large dialogue corpora using generative models. Generative models produce system responses that are autonomously generated word-by-word, opening up the possibility for realistic, flexible interactions. In support of this goal, we extend the recently proposed hierarchical recurrent encoder-decoder neural network to the dialogue domain, and demonstrate that this model is competitive with state-of-the-art neural language models and back-off n-gram models. We investigate the limitations of this and similar approaches, and show how its performance can be improved by bootstrapping the learning from a larger question-answer pair corpus and from pretrained word embeddings.Comment: 8 pages with references; Published in AAAI 2016 (Special Track on Cognitive Systems
    • 

    corecore