204 research outputs found

    Multi-Task Video Captioning with Video and Entailment Generation

    Full text link
    Video captioning, the task of describing the content of a video, has seen some promising improvements in recent years with sequence-to-sequence models, but accurately learning the temporal and logical dynamics involved in the task still remains a challenge, especially given the lack of sufficient annotated data. We improve video captioning by sharing knowledge with two related directed-generation tasks: a temporally-directed unsupervised video prediction task to learn richer context-aware video encoder representations, and a logically-directed language entailment generation task to learn better video-entailed caption decoder representations. For this, we present a many-to-many multi-task learning model that shares parameters across the encoders and decoders of the three tasks. We achieve significant improvements and the new state-of-the-art on several standard video captioning datasets using diverse automatic and human evaluations. We also show mutual multi-task improvements on the entailment generation task.Comment: ACL 2017 (14 pages w/ supplementary

    ๋”ฅ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ๊ธฐ๋ฐ˜์˜ ๋ฌธ์žฅ ์ธ์ฝ”๋”๋ฅผ ์ด์šฉํ•œ ๋ฌธ์žฅ ๊ฐ„ ๊ด€๊ณ„ ๋ชจ๋ธ๋ง

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2020. 2. ์ด์ƒ๊ตฌ.๋ฌธ์žฅ ๋งค์นญ์ด๋ž€ ๋‘ ๋ฌธ์žฅ ๊ฐ„ ์˜๋ฏธ์ ์œผ๋กœ ์ผ์น˜ํ•˜๋Š” ์ •๋„๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ฌธ์ œ์ด๋‹ค. ์–ด๋–ค ๋ชจ๋ธ์ด ๋‘ ๋ฌธ์žฅ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ฐํ˜€๋‚ด๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋†’์€ ์ˆ˜์ค€์˜ ์ž์—ฐ์–ด ํ…์ŠคํŠธ ์ดํ•ด ๋Šฅ๋ ฅ์ด ํ•„์š”ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ฌธ์žฅ ๋งค์นญ์€ ๋‹ค์–‘ํ•œ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ์‘์šฉ์˜ ์„ฑ๋Šฅ์— ์ค‘์š”ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฌธ์žฅ ์ธ์ฝ”๋”, ๋งค์นญ ํ•จ์ˆ˜, ์ค€์ง€๋„ ํ•™์Šต์ด๋ผ๋Š” ์„ธ ๊ฐ€์ง€ ์ธก๋ฉด์—์„œ ๋ฌธ์žฅ ๋งค์นญ์˜ ์„ฑ๋Šฅ ๊ฐœ์„ ์„ ๋ชจ์ƒ‰ํ•œ๋‹ค. ๋ฌธ์žฅ ์ธ์ฝ”๋”๋ž€ ๋ฌธ์žฅ์œผ๋กœ๋ถ€ํ„ฐ ์œ ์šฉํ•œ ํŠน์งˆ๋“ค์„ ์ถ”์ถœํ•˜๋Š” ์—ญํ• ์„ ํ•˜๋Š” ๊ตฌ์„ฑ ์š”์†Œ๋กœ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฌธ์žฅ ์ธ์ฝ”๋”์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•˜์—ฌ Gumbel Tree-LSTM๊ณผ Cell-aware Stacked LSTM์ด๋ผ๋Š” ๋‘ ๊ฐœ์˜ ์ƒˆ๋กœ์šด ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์•ˆํ•œ๋‹ค. Gumbel Tree-LSTM์€ ์žฌ๊ท€์  ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ(recursive neural network) ๊ตฌ์กฐ์— ๊ธฐ๋ฐ˜ํ•œ ์•„ํ‚คํ…์ฒ˜์ด๋‹ค. ๊ตฌ์กฐ ์ •๋ณด๊ฐ€ ํฌํ•จ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉํ•˜๋˜ ๊ธฐ์กด์˜ ์žฌ๊ท€์  ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ๋ชจ๋ธ๊ณผ ๋‹ฌ๋ฆฌ, Gumbel Tree-LSTM์€ ๊ตฌ์กฐ๊ฐ€ ์—†๋Š” ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ํŠน์ • ๋ฌธ์ œ์— ๋Œ€ํ•œ ์„ฑ๋Šฅ์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ํŒŒ์‹ฑ ์ „๋žต์„ ํ•™์Šตํ•œ๋‹ค. Cell-aware Stacked LSTM์€ LSTM ๊ตฌ์กฐ๋ฅผ ๊ฐœ์„ ํ•œ ์•„ํ‚คํ…์ฒ˜๋กœ, ์—ฌ๋Ÿฌ LSTM ๋ ˆ์ด์–ด๋ฅผ ์ค‘์ฒฉํ•˜์—ฌ ์‚ฌ์šฉํ•  ๋•Œ ๋ง๊ฐ ๊ฒŒ์ดํŠธ(forget gate)๋ฅผ ์ถ”๊ฐ€์ ์œผ๋กœ ๋„์ž…ํ•˜์—ฌ ์ˆ˜์ง ๋ฐฉํ–ฅ์˜ ์ •๋ณด ํ๋ฆ„์„ ๋” ํšจ์œจ์ ์œผ๋กœ ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ํ•œํŽธ, ์ƒˆ๋กœ์šด ๋งค์นญ ํ•จ์ˆ˜๋กœ์„œ ์šฐ๋ฆฌ๋Š” ์š”์†Œ๋ณ„ ์Œ์„ ํ˜• ๋ฌธ์žฅ ๋งค์นญ(element-wise bilinear sentence matching, ElBiS) ํ•จ์ˆ˜๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ElBiS ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํŠน์ • ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ์— ์ ํ•ฉํ•œ ๋ฐฉ์‹์œผ๋กœ ๋‘ ๋ฌธ์žฅ ํ‘œํ˜„์„ ํ•˜๋‚˜์˜ ๋ฒกํ„ฐ๋กœ ํ•ฉ์น˜๋Š” ๋ฐฉ๋ฒ•์„ ์ž๋™์œผ๋กœ ์ฐพ๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ๋ฌธ์žฅ ํ‘œํ˜„์„ ์–ป์„ ๋•Œ์— ์„œ๋กœ ๊ฐ™์€ ๋ฌธ์žฅ ์ธ์ฝ”๋”๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค๋Š” ์‚ฌ์‹ค๋กœ๋ถ€ํ„ฐ ์šฐ๋ฆฌ๋Š” ๋ฒกํ„ฐ์˜ ๊ฐ ์š”์†Œ ๊ฐ„ ์Œ์„ ํ˜•(bilinear) ์ƒํ˜ธ ์ž‘์šฉ๋งŒ์„ ๊ณ ๋ คํ•˜์—ฌ๋„ ๋‘ ๋ฌธ์žฅ ๋ฒกํ„ฐ ๊ฐ„ ๋น„๊ต๋ฅผ ์ถฉ๋ถ„ํžˆ ์ž˜ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฐ€์„ค์„ ์ˆ˜๋ฆฝํ•˜๊ณ  ์ด๋ฅผ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•œ๋‹ค. ์ƒํ˜ธ ์ž‘์šฉ์˜ ๋ฒ”์œ„๋ฅผ ์ œํ•œํ•จ์œผ๋กœ์จ, ์ž๋™์œผ๋กœ ์œ ์šฉํ•œ ๋ณ‘ํ•ฉ ๋ฐฉ๋ฒ•์„ ์ฐพ๋Š”๋‹ค๋Š” ์ด์ ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๋ชจ๋“  ์ƒํ˜ธ ์ž‘์šฉ์„ ๊ณ ๋ คํ•˜๋Š” ์Œ์„ ํ˜• ํ’€๋ง ๋ฐฉ๋ฒ•์— ๋น„ํ•ด ํ•„์š”ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ˆ˜๋ฅผ ํฌ๊ฒŒ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ํ•™์Šต ์‹œ ๋ ˆ์ด๋ธ”์ด ์žˆ๋Š” ๋ฐ์ดํ„ฐ์™€ ๋ ˆ์ด๋ธ”์ด ์—†๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ํ•จ๊ป˜ ์‚ฌ์šฉํ•˜๋Š” ์ค€์ง€๋„ ํ•™์Šต์„ ์œ„ํ•ด ์šฐ๋ฆฌ๋Š” ๊ต์ฐจ ๋ฌธ์žฅ ์ž ์žฌ ๋ณ€์ˆ˜ ๋ชจ๋ธ(cross-sentence latent variable model, CS-LVM)์„ ์ œ์•ˆํ•œ๋‹ค. CS-LVM์˜ ์ƒ์„ฑ ๋ชจ๋ธ์€ ์ถœ์ฒ˜ ๋ฌธ์žฅ(source sentence)์˜ ์ž ์žฌ ํ‘œํ˜„ ๋ฐ ์ถœ์ฒ˜ ๋ฌธ์žฅ๊ณผ ๋ชฉํ‘œ ๋ฌธ์žฅ(target sentence) ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๋ณ€์ˆ˜๋กœ๋ถ€ํ„ฐ ๋ชฉํ‘œ ๋ฌธ์žฅ์ด ์ƒ์„ฑ๋œ๋‹ค๊ณ  ๊ฐ€์ •ํ•œ๋‹ค. CS-LVM์—์„œ๋Š” ๋‘ ๋ฌธ์žฅ์ด ํ•˜๋‚˜์˜ ๋ชจ๋ธ ์•ˆ์—์„œ ๋ชจ๋‘ ๊ณ ๋ ค๋˜๊ธฐ ๋•Œ๋ฌธ์—, ํ•™์Šต์— ์‚ฌ์šฉ๋˜๋Š” ๋ชฉ์  ํ•จ์ˆ˜๊ฐ€ ๋” ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ •์˜๋œ๋‹ค. ๋˜ํ•œ, ์šฐ๋ฆฌ๋Š” ์ƒ์„ฑ ๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๋” ์˜๋ฏธ์ ์œผ๋กœ ์ ํ•ฉํ•œ ๋ฌธ์žฅ์„ ์ƒ์„ฑํ•˜๋„๋ก ์œ ๋„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ผ๋ จ์˜ ์˜๋ฏธ ์ œ์•ฝ๋“ค์„ ์ •์˜ํ•œ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ๊ฐœ์„  ๋ฐฉ์•ˆ๋“ค์€ ๋ฌธ์žฅ ๋งค์นญ ๊ณผ์ •์„ ํฌํ•จํ•˜๋Š” ๋‹ค์–‘ํ•œ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ์‘์šฉ์˜ ํšจ์šฉ์„ฑ์„ ๋†’์ผ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Sentence matching is a task of predicting the degree of match between two sentences. Since high level of understanding natural language text is needed for a model to identify the relationship between two sentences, it is an important component for various natural language processing applications. In this dissertation, we seek for the improvement of the sentence matching module from the following three ingredients: sentence encoder, matching function, and semi-supervised learning. To enhance a sentence encoder network which takes responsibility of extracting useful features from a sentence, we propose two new sentence encoder architectures: Gumbel Tree-LSTM and Cell-aware Stacked LSTM (CAS-LSTM). Gumbel Tree-LSTM is based on a recursive neural network (RvNN) architecture, however unlike typical RvNN architectures it does not need a structured input. Instead, it learns from data a parsing strategy that is optimized for a specific task. The latter, CAS-LSTM, extends the stacked long short-term memory (LSTM) architecture by introducing an additional forget gate for better handling of vertical information flow. And then, as a new matching function, we present the element-wise bilinear sentence matching (ElBiS) function. It aims to automatically find an aggregation scheme that fuses two sentence representations into a single one suitable for a specific task. From the fact that a sentence encoder is shared across inputs, we hypothesize and empirically prove that considering only the element-wise bilinear interaction is sufficient for comparing two sentence vectors. By restricting the interaction, we can largely reduce the number of required parameters compared with full bilinear pooling methods without losing the advantage of automatically discovering useful aggregation schemes. Finally, to facilitate semi-supervised training, i.e. to make use of both labeled and unlabeled data in training, we propose the cross-sentence latent variable model (CS-LVM). Its generative model assumes that a target sentence is generated from the latent representation of a source sentence and the variable indicating the relationship between the source and the target sentence. As it considers the two sentences in a pair together in a single model, the training objectives are defined more naturally than prior approaches based on the variational auto-encoder (VAE). We also define semantic constraints that force the generator to generate semantically more plausible sentences. We believe that the improvements proposed in this dissertation would advance the effectiveness of various natural language processing applications containing modeling sentence pairs.Chapter 1 Introduction 1 1.1 Sentence Matching 1 1.2 Deep Neural Networks for Sentence Matching 2 1.3 Scope of the Dissertation 4 Chapter 2 Background and Related Work 9 2.1 Sentence Encoders 9 2.2 Matching Functions 11 2.3 Semi-Supervised Training 13 Chapter 3 Sentence Encoder: Gumbel Tree-LSTM 15 3.1 Motivation 15 3.2 Preliminaries 16 3.2.1 Recursive Neural Networks 16 3.2.2 Training RvNNs without Tree Information 17 3.3 Model Description 19 3.3.1 Tree-LSTM 19 3.3.2 Gumbel-Softmax 20 3.3.3 Gumbel Tree-LSTM 22 3.4 Implementation Details 25 3.5 Experiments 27 3.5.1 Natural Language Inference 27 3.5.2 Sentiment Analysis 32 3.5.3 Qualitative Analysis 33 3.6 Summary 36 Chapter 4 Sentence Encoder: Cell-aware Stacked LSTM 38 4.1 Motivation 38 4.2 Related Work 40 4.3 Model Description 43 4.3.1 Stacked LSTMs 43 4.3.2 Cell-aware Stacked LSTMs 44 4.3.3 Sentence Encoders 46 4.4 Experiments 47 4.4.1 Natural Language Inference 47 4.4.2 Paraphrase Identification 50 4.4.3 Sentiment Classification 52 4.4.4 Machine Translation 53 4.4.5 Forget Gate Analysis 55 4.4.6 Model Variations 56 4.5 Summary 59 Chapter 5 Matching Function: Element-wise Bilinear Sentence Matching 60 5.1 Motivation 60 5.2 Proposed Method: ElBiS 61 5.3 Experiments 63 5.3.1 Natural language inference 64 5.3.2 Paraphrase Identification 66 5.4 Summary and Discussion 68 Chapter 6 Semi-Supervised Training: Cross-Sentence Latent Variable Model 70 6.1 Motivation 70 6.2 Preliminaries 71 6.2.1 Variational Auto-Encoders 71 6.2.2 von Misesโ€“Fisher Distribution 73 6.3 Proposed Framework: CS-LVM 74 6.3.1 Cross-Sentence Latent Variable Model 75 6.3.2 Architecture 78 6.3.3 Optimization 79 6.4 Experiments 84 6.4.1 Natural Language Inference 84 6.4.2 Paraphrase Identification 85 6.4.3 Ablation Study 86 6.4.4 Generated Sentences 88 6.4.5 Implementation Details 89 6.5 Summary and Discussion 90 Chapter 7 Conclusion 92 Appendix A Appendix 96 A.1 Sentences Generated from CS-LVM 96Docto

    Semantic Tagging with Deep Residual Networks

    Get PDF
    We propose a novel semantic tagging task, sem-tagging, tailored for the purpose of multilingual semantic parsing, and present the first tagger using deep residual networks (ResNets). Our tagger uses both word and character representations and includes a novel residual bypass architecture. We evaluate the tagset both intrinsically on the new task of semantic tagging, as well as on Part-of-Speech (POS) tagging. Our system, consisting of a ResNet and an auxiliary loss function predicting our semantic tags, significantly outperforms prior results on English Universal Dependencies POS tagging (95.71% accuracy on UD v1.2 and 95.67% accuracy on UD v1.3).Comment: COLING 2016, camera ready versio

    Explicit Contextual Semantics for Text Comprehension

    Get PDF
    Who did what to whom is a major focus in natural language understanding, which is right the aim of semantic role labeling (SRL) task. Despite of sharing a lot of processing characteristics and even task purpose, it is surprisingly that jointly considering these two related tasks was never formally reported in previous work. Thus this paper makes the first attempt to let SRL enhance text comprehension and inference through specifying verbal predicates and their corresponding semantic roles. In terms of deep learning models, our embeddings are enhanced by explicit contextual semantic role labels for more fine-grained semantics. We show that the salient labels can be conveniently added to existing models and significantly improve deep learning models in challenging text comprehension tasks. Extensive experiments on benchmark machine reading comprehension and inference datasets verify that the proposed semantic learning helps our system reach new state-of-the-art over strong baselines which have been enhanced by well pretrained language models from the latest progress.Comment: Proceedings of the 33nd Pacific Asia Conference on Language, Information and Computation (PACLIC 33

    Relation Classification with Limited Supervision

    Get PDF
    Large reams of unstructured data, for instance in form textual document collections containing entities and relations, exist in many domains. The process of deriving valuable domain insights and intelligence from such documents collections usually involves the extraction of information such as the relations between the entities in such collections. Relation classification is the task of detecting relations between entities. Supervised machine learning models, which have become the tool of choice for relation classification, require substantial quantities of annotated data for each relation in order to perform optimally. For many domains, such quantities of annotated data for relations may not be readily available, and manually curating such annotations may not be practical due to time and cost constraints. In this work, we develop both model-specific and model-agnostic approaches for relation classification with limited supervision. We start by proposing an approach for learning embeddings for contextual surface patterns, which are the set of surface patterns associated with entity pairs across a text corpus, to provide additional supervision signals for relation classification with limited supervision. We find that this approach improves classification performance on relations with limited supervision instances. However, this initial approach assumes the availability of at least one annotated instance per relation during training. In order to address this limitation, we propose an approach which formulates the task of relation classification as that of textual entailment. This reformulation allows us to use the textual descriptions of relations to classify their instances. It also allows us to utilize existing textual entailment datasets and models to classify relations with zero supervision instances. The two methods proposed previously rely on the use of specific model architectures for relation classification. Since a wide variety of models have been proposed for relation classification in the literature, a more general approach is thus desirable. We subsequently propose our first model-agnostic meta-learning algorithm for relation classification with limited supervision. This algorithm is applicable to any gradient-optimized relation classification model. We show that the proposed approach improves the predictive performance of two existing relation classification models when supervision for relations is limited. Next, because all the approaches we have proposed so far assume the availability of all supervision needed for classifying relations prior to model training, they are unable to handle the case when new supervision for relations becomes available after training. Such new supervision may need to be incorporated into the model to enable it classify new relations or to improve its performance on existing relations. Our last approach addresses this short-coming. We propose a model-agnostic algorithm which enables relation classification models to learn continually from new supervision as it becomes available, while doing so in a data-efficient manner and without forgetting knowledge of previous relations
    • โ€ฆ
    corecore