57,795 research outputs found

    Generating Text with Deep Reinforcement Learning

    Full text link
    We introduce a novel schema for sequence to sequence learning with a Deep Q-Network (DQN), which decodes the output sequence iteratively. The aim here is to enable the decoder to first tackle easier portions of the sequences, and then turn to cope with difficult parts. Specifically, in each iteration, an encoder-decoder Long Short-Term Memory (LSTM) network is employed to, from the input sequence, automatically create features to represent the internal states of and formulate a list of potential actions for the DQN. Take rephrasing a natural sentence as an example. This list can contain ranked potential words. Next, the DQN learns to make decision on which action (e.g., word) will be selected from the list to modify the current decoded sequence. The newly modified output sequence is subsequently used as the input to the DQN for the next decoding iteration. In each iteration, we also bias the reinforcement learning's attention to explore sequence portions which are previously difficult to be decoded. For evaluation, the proposed strategy was trained to decode ten thousands natural sentences. Our experiments indicate that, when compared to a left-to-right greedy beam search LSTM decoder, the proposed method performed competitively well when decoding sentences from the training set, but significantly outperformed the baseline when decoding unseen sentences, in terms of BLEU score obtained.Comment: Accepted to the NIPS2015 Deep Reinforcement Learning Worksho

    Generating Black-Box Adversarial Examples for Text Classifiers Using a Deep Reinforced Model

    Full text link
    Recently, generating adversarial examples has become an important means of measuring robustness of a deep learning model. Adversarial examples help us identify the susceptibilities of the model and further counter those vulnerabilities by applying adversarial training techniques. In natural language domain, small perturbations in the form of misspellings or paraphrases can drastically change the semantics of the text. We propose a reinforcement learning based approach towards generating adversarial examples in black-box settings. We demonstrate that our method is able to fool well-trained models for (a) IMDB sentiment classification task and (b) AG's news corpus news categorization task with significantly high success rates. We find that the adversarial examples generated are semantics-preserving perturbations to the original text.Comment: 16 pages, 3 figures, ECML PKDD 201

    AI-Powered Text Generation for Harmonious Human-Machine Interaction: Current State and Future Directions

    Full text link
    In the last two decades, the landscape of text generation has undergone tremendous changes and is being reshaped by the success of deep learning. New technologies for text generation ranging from template-based methods to neural network-based methods emerged. Meanwhile, the research objectives have also changed from generating smooth and coherent sentences to infusing personalized traits to enrich the diversification of newly generated content. With the rapid development of text generation solutions, one comprehensive survey is urgent to summarize the achievements and track the state of the arts. In this survey paper, we present the general systematical framework, illustrate the widely utilized models and summarize the classic applications of text generation.Comment: Accepted by IEEE UIC 201

    A Comprehensive Survey of Deep Learning for Image Captioning

    Full text link
    Generating a description of an image is called image captioning. Image captioning requires to recognize the important objects, their attributes and their relationships in an image. It also needs to generate syntactically and semantically correct sentences. Deep learning-based techniques are capable of handling the complexities and challenges of image captioning. In this survey paper, we aim to present a comprehensive review of existing deep learning-based image captioning techniques. We discuss the foundation of the techniques to analyze their performances, strengths and limitations. We also discuss the datasets and the evaluation metrics popularly used in deep learning based automatic image captioning.Comment: 36 Pages, Accepted as a Journal Paper in ACM Computing Surveys (October 2018

    Image Captioning based on Deep Reinforcement Learning

    Full text link
    Recently it has shown that the policy-gradient methods for reinforcement learning have been utilized to train deep end-to-end systems on natural language processing tasks. What's more, with the complexity of understanding image content and diverse ways of describing image content in natural language, image captioning has been a challenging problem to deal with. To the best of our knowledge, most state-of-the-art methods follow a pattern of sequential model, such as recurrent neural networks (RNN). However, in this paper, we propose a novel architecture for image captioning with deep reinforcement learning to optimize image captioning tasks. We utilize two networks called "policy network" and "value network" to collaboratively generate the captions of images. The experiments are conducted on Microsoft COCO dataset, and the experimental results have verified the effectiveness of the proposed method

    OptiGAN: Generative Adversarial Networks for Goal Optimized Sequence Generation

    Full text link
    One of the challenging problems in sequence generation tasks is the optimized generation of sequences with specific desired goals. Current sequential generative models mainly generate sequences to closely mimic the training data, without direct optimization of desired goals or properties specific to the task. We introduce OptiGAN, a generative model that incorporates both Generative Adversarial Networks (GAN) and Reinforcement Learning (RL) to optimize desired goal scores using policy gradients. We apply our model to text and real-valued sequence generation, where our model is able to achieve higher desired scores out-performing GAN and RL baselines, while not sacrificing output sample diversity.Comment: Preprint for accepted conference paper at International Joint Conference on Neural Networks (IJCNN) 202

    Music Generation by Deep Learning - Challenges and Directions

    Full text link
    In addition to traditional tasks such as prediction, classification and translation, deep learning is receiving growing attention as an approach for music generation, as witnessed by recent research groups such as Magenta at Google and CTRL (Creator Technology Research Lab) at Spotify. The motivation is in using the capacity of deep learning architectures and training techniques to automatically learn musical styles from arbitrary musical corpora and then to generate samples from the estimated distribution. However, a direct application of deep learning to generate content rapidly reaches limits as the generated content tends to mimic the training set without exhibiting true creativity. Moreover, deep learning architectures do not offer direct ways for controlling generation (e.g., imposing some tonality or other arbitrary constraints). Furthermore, deep learning architectures alone are autistic automata which generate music autonomously without human user interaction, far from the objective of interactively assisting musicians to compose and refine music. Issues such as: control, structure, creativity and interactivity are the focus of our analysis. In this paper, we select some limitations of a direct application of deep learning to music generation, analyze why the issues are not fulfilled and how to address them by possible approaches. Various examples of recent systems are cited as examples of promising directions.Comment: 17 pages. arXiv admin note: substantial text overlap with arXiv:1709.01620. Accepted for publication in Special Issue on Deep learning for music and audio, Neural Computing & Applications, Springer Nature, 201

    Multimodal Storytelling via Generative Adversarial Imitation Learning

    Full text link
    Deriving event storylines is an effective summarization method to succinctly organize extensive information, which can significantly alleviate the pain of information overload. The critical challenge is the lack of widely recognized definition of storyline metric. Prior studies have developed various approaches based on different assumptions about users' interests. These works can extract interesting patterns, but their assumptions do not guarantee that the derived patterns will match users' preference. On the other hand, their exclusiveness of single modality source misses cross-modality information. This paper proposes a method, multimodal imitation learning via generative adversarial networks(MIL-GAN), to directly model users' interests as reflected by various data. In particular, the proposed model addresses the critical challenge by imitating users' demonstrated storylines. Our proposed model is designed to learn the reward patterns given user-provided storylines and then applies the learned policy to unseen data. The proposed approach is demonstrated to be capable of acquiring the user's implicit intent and outperforming competing methods by a substantial margin with a user study.Comment: IJCAI 201

    A Survey on Dialogue Systems: Recent Advances and New Frontiers

    Full text link
    Dialogue systems have attracted more and more attention. Recent advances on dialogue systems are overwhelmingly contributed by deep learning techniques, which have been employed to enhance a wide range of big data applications such as computer vision, natural language processing, and recommender systems. For dialogue systems, deep learning can leverage a massive amount of data to learn meaningful feature representations and response generation strategies, while requiring a minimum amount of hand-crafting. In this article, we give an overview to these recent advances on dialogue systems from various perspectives and discuss some possible research directions. In particular, we generally divide existing dialogue systems into task-oriented and non-task-oriented models, then detail how deep learning techniques help them with representative algorithms and finally discuss some appealing research directions that can bring the dialogue system research into a new frontier.Comment: 13 pages. arXiv admin note: text overlap with arXiv:1703.01008 by other author

    Multi-Task Generative Adversarial Nets with Shared Memory for Cross-Domain Coordination Control

    Full text link
    Generating sequential decision process from huge amounts of measured process data is a future research direction for collaborative factory automation, making full use of those online or offline process data to directly design flexible make decisions policy, and evaluate performance. The key challenges for the sequential decision process is to online generate sequential decision-making policy directly, and transferring knowledge across tasks domain. Most multi-task policy generating algorithms often suffer from insufficient generating cross-task sharing structure at discrete-time nonlinear systems with applications. This paper proposes the multi-task generative adversarial nets with shared memory for cross-domain coordination control, which can generate sequential decision policy directly from raw sensory input of all of tasks, and online evaluate performance of system actions in discrete-time nonlinear systems. Experiments have been undertaken using a professional flexible manufacturing testbed deployed within a smart factory of Weichai Power in China. Results on three groups of discrete-time nonlinear control tasks show that our proposed model can availably improve the performance of task with the help of other related tasks
    corecore